
Applications

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

2018, Vol. 94(12) 1099–1127

� The Author(s) 2018

DOI: 10.1177/0037549717749014

journals.sagepub.com/home/sim

Co-simulation of cyber-physical
systems using a DEVS wrapping
strategy in the MECSYCO middleware

Benjamin Camus1, Thomas Paris1, Julien Vaubourg1, Yannick Presse2,
Christine Bourjot1, Laurent Ciarletta1 and Vincent Chevrier1

Abstract
Most modeling and simulation (M&S) questions about cyber-physical systems (CPSs) require expert skills belonging to
different scientific fields. The challenges are then to integrate each domain’s tools (formalism and simulation software)
within the rigorous framework of M&S process. To answer this issue, we give the specifications of the Multi-agent
Environment for Complex-SYstem CO-simulation (MECSYCO) middleware which enables to interconnect several pre-
existing and heterogeneous M&S tools, so they can simulate a whole CPS together. The middleware performs the co-
simulation in a parallel, decentralized, and distributable fashion thanks to its modular multi-agent architecture. In order
to rigorously integrate tools that use different formalisms, the co-simulation engine of MECSYCO is based on the dis-
crete event system specification (DEVS). The central idea of MECSYCO is to use a DEVS wrapping strategy to integrate
each tool into the middleware. Thus, heterogeneous tools can be homogeneously co-simulated in the form of a DEVS
system. By using DEVS, MECSYCO benefits from the numerous scientific works which have demonstrated the integra-
tive power of this formalism and give crucial guidelines to rigorously design wrappers. We demonstrate that our discrete
framework can integrate a vast amount of continuous M&S tools by wrapping the Functional Mockup Interface (FMI)
standard. To this end, we take advantage of DEVS efforts of the literature (namely, the DEV&DESS hybrid formalism and
Quantized State System (QSS) solvers) to design DEVS wrappers for Functional Mockup Unit (FMU) components. As a
side-effect, this wrapping is not restricted to MECSYCO but can be applied in any DEVS-based platform. We evaluate
MECSYCO with the proof of concept of a smart heating use case, where we co-simulate non-DEVS-centric M&S tools.
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1 Introduction

In this article, we are interested in the modeling and simu-

lation (M&S) of cyber-physical systems (CPSs). As

defined by Rajkumar et al.,1‘‘CPSs are physical and engi-

neered systems whose operations are monitored, coordi-

nated, controlled and integrated by a computing and

communication core.’’ CPSs can be for instance, smart

grids or autonomous cars.

By experimenting in a rigorous way on a simplification

of a CPS (i.e., a model) instead of a real one, the M&S pro-

cess avoids cost, time, and ethic constraints, and thus posi-

tions itself as a choice tool for the CPS science. However,

when applied in this context, the M&S process faces many

specific challenges. Indeed, the expert skills required for

describing a CPS may come from different domains (e.g.,

for a smart grid: telecommunications, information systems,

electrical grids), each of them having their own well-tried

and well-tested models and M&S tools (i.e., formalisms

and simulation software). The challenges are then to recon-

cile these heterogeneous points of view, and to integrate

the models and tools of each domain within the rigorous

framework of the M&S process.

A very promising strategy to tackle these challenges

lies in co-simulation. Co-simulation consists in performing
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a simulation by reusing models implemented in different

simulation software, managing exchanges of data between

these software, and synchronizing their execution in order

to make their models interact. It allows every specialist

involved in the M&S process of a CPS to keep using the

tools which are popular in his/her community while pro-

viding to each of them a multidisciplinary context. In addi-

tion, every simulator can (in some cases) be executed on

an individual machine, enabling to co-simulate very large

systems. However, co-simulations face many issues

directly related to the heterogeneity of models and tools

that need to interact together.

Our contribution to tackle these issues is two-fold in

this paper.

1. We give the whole operational specification of Multi-

agent Environment for Complex-SYstem CO-simula-

tion (MECSYCO). MECSYCO is a middleware dedi-

cated to the co-simulation of CPS (i.e., it enables to

interconnect several pre-existing and heterogeneous

(both at the software and formal levels) M&S tools

belonging to different scientific fields, so they can

simulate a whole CPS together). The co-simulation

engine of MECSYCO is based on the discrete-event

system specification (DEVS) formalism in order to

integrate tools which use different modeling formal-

isms. Each tool is integrated into the middleware

thanks to a DEVS wrapping strategy: a wrapper must

be designed in order to control the tool like a DEVS

simulator. Thus, heterogeneous tools can be homoge-

neously co-simulated in the form of a DEVS system.

The choice of using DEVS as a pivotal formalism is

motivated by numerous scientific works which have

demonstrated over the years that DEVS can rigor-

ously integrate many other M&S formalisms. A very

important practical advantage is that these works also

describe how each formalism can be integrated into

DEVS, thus giving crucial guidelines and tools for

rigorously designing the MECSYCO wrappers.

2. We demonstrate that this approach can rigorously

integrate equation-based continuous tools and

make them interact with discrete-event models.

We take advantage of DEVS efforts of the litera-

ture (namely, the DEV&DESS hybrid formalism

and the Quantized State System (QSS) solver strat-

egy) to design DEVS wrappers for continuous

tools. We exploit the federating FMI (Functional

Mockup Interface) standard in order to make our

wrappers compliant with a vast number of tools.

Thus, we propose DEVS wrappers for Functional

Mockup Unit (FMU) components.

We illustrate these two contributions with a proof of

concept of a smart heating use case, where we integrate

and co-simulate non-DEVS-centric M&S tools, namely

OpenModelica, and NS-3.

The paper is organized as follows. Section 2 presents

the different challenges related to the co-simulation of

CPS and existing solutions in the literature. In order to

make our proposition fully understandable for non-

specialist readers, we introduce in Section 3 the back-

ground and concepts (i.e., DEVS and FMI) that we used.

Section 4 details our global proposal and discusses our

positioning with regards to the literature. Section 5 pre-

sents our first contribution: the MECSYCO platform

which enables the parallel co-simulation of CPS in a rigor-

ous and decentralized way. Sections 6, 7, and 8 explain

our second contribution: the DEVS wrapping of the FMI

standard. In Section 9, we discuss the strengths and draw-

backs of our solution. Finally, in Section 10 we illustrate

our proposition with a smart heating use case.

2 Co-simulation challenges and related
works

When co-simulating a CPS, the system is represented as a

set of interacting subsystems. Each of them is modeled

separately, possibly with different tools (software and

formalisms). Co-simulating consists in managing the syn-

chronization of these heterogeneous simulators as well as

the exchange of data between them. This raises two major

challenges presented below.

2.1 Simulation software interoperability

From a software perspective, co-simulation implies dealing

with a heterogeneous set of simulation software. Indeed, as

shown in Table 1, different domains of expertise may have

different simulation software, potentially implemented in

different programming languages and compliant with dif-

ferent operating systems (OSs). Moreover, some of the

simulation software must be available only on some spe-

cific hardware (e.g., when a private license is required).

Interoperability processes are then required2 to synchro-

nize these heterogeneous software executions and manage

exchanges of usable data between them.3

This interoperability can be achieved in an ad hoc way

by directly modifying simulation software to make them

compliant with each other. A more generic solution con-

sists of using a simulation middleware dedicated to the

management of the interoperability within the co-simula-

tion. The advantage of this solution is that it is flexible: we

can easily add, remove, and change some simulation soft-

ware without impacting the rest of co-simulation imple-

mentation. This is feasible because in this case, simulation

software do not have to be directly interoperable with each

other, but have to be interoperable with the middleware

instead. The co-simulation middleware can also serve as a
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communication middleware, enabling the distribution of

the co-simulation and the compliance with the required

hardware and OS diversity.

The High-Level Architecture (HLA) standard8 gives

generic guidelines and rules for building an event-based

co-simulation middleware. However, HLA does not give

the whole specification of the co-simulation middleware.

Hence, HLA does not detail the (parallel or sequential)

synchronization algorithm, the distributed architecture and

its implementation and let them be tool-specific. As a

drawback, simulation from one platform to another may be

not reproducible, and different implementations of HLA

may be not interoperable and therefore cannot be simulta-

neously used in a co-simulation. Other co-simulation mid-

dleware such as Mosaik9 are based on a discrete time-step

framework which does not enable the rigorous integration

of models written in heterogeneous formalisms.

2.2 Multi-formalism integration

Because of its own heterogeneity, a CPS may exhibit both

discrete and continuous dynamics, and several formalisms

may be required to describe the whole system.10 For

example, the cyber part is traditionally discrete whereas

the physical one is continuous. Formalisms can be, for

instance, differential or algebraic equations for the contin-

uous parts, but event-based, finite-state automata or time-

stepped models for the discrete parts.

As a consequence, discrete and continuous models may

interact and co-evolve inside a same co-simulation. At the

execution level, this formalism heterogeneity implies deal-

ing with different scheduling policies: cyclic or variable

time-steps, event-based, etc. A rigorous framework is then

needed to integrate these different models in order to have

a univocal behavior of the co-simulation.11

Two solutions exist to integrate these different

formalisms.10

2.2.1 Models translation. The first solution is to translate the

models in the same formalism and perform the simulation

using the abstract simulator of this formalism. This is the

solution chosen by AToM3,12 which enables automatically

translating two models, using a sequence of transformations,

to their closest common formalism. To do so, AToM3 relies

on a formalism transformation graph where every node cor-

responds to a formalism and each arc represents an existing

automatic translation. The shortcoming of this solution is

that it forces to rewrite and re-implement the existing mod-

els. Thus, it does not have the advantages of co-simulation

(i.e., it requires translation and implementation efforts (when

not automatic) which may introduce errors).

2.2.2 Hybrid M&S formalism. The second solution is to use

a hybrid M&S formalism which explicitly describes how

continuous and discrete systems interact and co-evolve.

This super-formalism can be DEV&DESS13 or HFSS14

(Heterogeneous Flow System Specification). Both of them

merge a whole set of traditional techniques used in the field

of hybrid modeling. Such techniques notably include (a)

the integration of discrete-input events during the evolution

of the continuous system, and (b) the generation of two

kinds of discrete events during the simulation: time events

and state events11 generated from the continuous system

state. While the former consists of events scheduled at pre-

defined simulation times, the latter corresponds to events

whose occurrences are related to some specific conditions

on the continuous state (usually when a continuous variable

crosses a given threshold). From a simulation perspective,

the challenge is to integrate this discrete-event logic, in a

generic way, during the numerical resolution of the contin-

uous system (which is concerned with finding the best

trade-off between the accuracy of the solution and the

simulation efficiency).15 Most notably, the detection and

the accurate localization in time of state events during the

simulation is a well-known issue in hybrid simulation.16

2.3 Synthesis

To sum up, setting up a co-simulation requires to solve a

set of specific issues at the formalism and the software

Table 1. Example of M&S application domains and their simulation software.

Domain Simulation software Languages Operating system

Collective motion NetLogo4

GAMA5

Java API Java & Scala Java GNU/Linux, Windows, Mac OS
GNU/Linux, Windows, Mac OS

Telecom networks NS-36

OMNeT++7
C++, Python API
C++

GNU/Linux
GNU/Linux, Windows, Mac OS

Robotic VREP C/C++, Lua, Python, Java GNU/Linux, Windows, Mac OS

Physical system Dymola
Matlab/Simulink

Proprietary code
Proprietary code, C/C++ API, Fortran

Windows
GNU/Linux, Windows, Mac OS

API: Application Programming Interface; M&S: modeling and simulation; OS: operating system.
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levels. The solutions to provide are directly related to the

heterogeneity found at each of these levels.

Additionally, in a M&S process, modularity is often

required (i.e., to be able to add/remove/change models or

simulation software and their connections without redefin-

ing all the co-simulation from scratch).17

In order to fulfill these requirements, ad hoc solutions

should be avoided and a more generic and rigorous frame-

work is needed. In the following, we detail the background

and concepts used to meet these requirements.

3 Background and concepts

Our proposal relies both on the DEVS formalism and the

FMI standard. In this section, we describe them in order to

make our proposition fully understandable for non-

specialist readers.

3.1 DEVS formalism

DEVS18 is an event-based formalism for the M&S of sys-

tem of systems. One important feature of DEVS is its inte-

grative power for multi-paradigm M&S.19 Indeed, not only

does DEVS appear to be universal for describing discrete-

event systems,18 but it can also integrate continuous sys-

tems20 expressed for instance with differential equations.21

Of particular interest in the scope of this article is the fact

that, as shown by Zeigler,22 DEVS can also embed the

DEV&DESS formalism.13 This formalism offers a sound

framework for representing hybrid systems as it describes

how continuous systems interact and co-evolve with the

discrete world.

Besides, DEVS can encapsulate differential and alge-

braic equation solvers by relying on a quantized integrator

approach like the QSS method.23 This approach is based

on state quantization instead of the time discretization used

by traditional integration methods. This strategy shows in

some cases24 better performances than traditional meth-

ods.25 QSS is well-suited for hybrid modeling as it makes

the continuous component equivalent to a DEVS model,

which naturally integrates input events, and makes state-

events detection trivial and costless.26

As summarized by Quesnel,21 the integration of a form-

alism in DEVS can be performed either by a mapping or a

wrapping. While the former consists in establishing the

equivalence between the formalisms, the latter implies

bridging the gap between the two abstract simulators.27

The advantage of the wrapping strategy is to enable reus-

ing pre-existing models already implemented in some

simulation software.28

The following section is a formal description of DEVS

in order to fully understand our proposal, especially con-

cerning the wrapping of continuous models.

DEVS distinguishes atomic from coupled models. A

DEVS atomic model i describes the behavior of the sys-

tem and corresponds to this structure:

Mi=(Xi, Yi, S, dext, dint, l, ta) ð1Þ

where:

Xi = f(p, v)jp 2 InPortsi, v 2 VXi
g is the set of input

ports and values (these ports can receive external input

events);

Yi = f(p, v)jp 2 OutPortsi, v 2 VYi
g is the set of output

ports and values (these ports can send external output

events),s is the set of the model states; and

dext : Q 3 Xi ! S is the external transition function

(describing how the model reacts to input events) where:

Q= f(s, e)js 2 S, 04 e4 ta(s)g is the total state of the
model;

e is the elapsed time since the last transition;

dint : S ! S is the internal transition function describing

the internal dynamic of the model (i.e., the function pro-

cesses an internal event which changes the model state);

l : S ! Yi is the output function describing the output

events of the model according to its current state; and

ta : S ! R
+
0,‘ is the time advance function describing

how long the model will stay in the same current state (in

the absence of input event). The function is used to get the

date of the next internal event.

A coupled model describes the structure of the system.

It corresponds to the following structure, describing a set

of interconnected atomic models:

N=(X , Y ,D, fMd jd 2 Dg,EIC,EOC, IC) ð2Þ

where:

X = f(p, v)jp 2 InPorts, v 2 VXi
g is the set of input

ports and values;

Y = f(p, v)jp 2 OutPorts, v 2 VYi
g is the set of output

ports and values;

D is the set of models ID;

EIC = f((N , ipN ), (d, ipd))jipN 2 InPorts, d 2 D, ipd 2
InPortsdg is the set of external input couplings;

EOC = f((d, opd), (N , opN ))jopN 2 OutPorts, d 2 D,
opd 2 OutPortsdg is the set of external output couplings;

and

IC = f((a, opa), (b, ipb))ja, b 2 D, opa 2 OutPortsa, ipb

2 InPortsbg is the set of internal couplings.
The closure under the coupling of DEVS is an impor-

tant property which enables hierarchical modeling by prov-

ing that a coupled model is equivalent to an atomic one.

Therefore, a DEVS coupled model can be composed of a

set of interconnected atomic and coupled models (these lat-

ter may be at their turn composed of coupled models, etc.).

DEVS proposes sequential and parallel abstract simulators

and coordinators for respectively simulating atomic and

coupled models. Thanks to the closure under the coupling
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of DEVS, these abstract simulators and coordinators can

be controlled in a unified way using the DEVS simulation

protocol.

3.2 The FMI standard

FMI29 is a standard of the MODELISAR Consortium and

the Modelica Association which proposes a generic soft-

ware interface for manipulating equation-based models

and their solvers. These models may be composed of a

mixture of differential, algebraic and discrete-time equa-

tions. FMI aims are: (a) to define a generic way of exchan-

ging and using models designed with different equation-

based simulation tools; and (b) to protect the intellectual

property of these models by ensuring that they are seen as

black-boxes.

A model implementing the FMI standard is called a

FMU. The FMU interface differentiates the output vari-

ables whose values are accessible from the outside (i.e.,

equivalent to output ports of the model), from the input

variables whose values can be set from the outside (i.e.,

equivalent to input ports of the model). From a software

perspective, this interface is composed of a set of C func-

tions, and an XML file. C functions enable controlling the

FMU, whereas the XML file describes the FMU and its

interface. More precisely, the XML file describes names,

types (i.e., Real/Integer/Boolean/String), variability (con-

stant/discrete/continuous), and causality (input/output/

parameter) of the variables, as well as the continuous states

vector.

So far around 52 simulation tools (e.g., Dymola,

MATLAB/Simulink, OpenModelica) claim to be compli-

ant with FMI version 2.0 (80 with FMI version 1.0),

including 23 tools officially certified (29 with FMI version

1.0 according to https://www.fmi-standard.org/tools).

Several of these tools are based on Modelica30 which is an

object-oriented language adapted to the M&S of hybrid

systems. In order to support the standard, a tool needs

either (a) to be able to export its own models as FMUs, or

(b) to be able to import existing FMUs and use them as

components in models. FMI allows two ways of exporting

and importing a model: FMI for co-simulation (FMI-CS)

and FMI for model exchange (FMI-ME).

With FMI-ME, the model is exported without its solver.

The FMU must be then associated with an external solver

in order to be simulated. For that purpose, the solver can

especially use the following C functions of the FMU API

(Application Programming Interface) :

� fmi2GetReal/Integer/Boolean/String
returns the current value of a given output variable.

� fmi2SetReal/Integer/Boolean/String
sets a specific input variable to a given value.

� fmi2SetTime sets the clock of the model to a

given simulated time.

� fmi2GetContinuousStates returns the

continuous-state vector.
� fmi2SetContinuousStates sets a continuous-

state vector.
� fmi2GetDerivatives returns the derivative

vector of the continuous state.
� fmi2CompletedIntegratorStep indicates

that the integration step is finished, and evaluates if

internal events have to be processed.
� fmi2GetEventIndicators returns indicators

of state-events occurrences.
� fmi2EnterEventMode enters into the discrete-

event mode (i.e., makes the discrete-time equations

active). While the FMU is in this mode, the integra-

tion of the continuous state is stopped but discrete

events (time, state or external) can be processed.
� fmi2EnterContinuousTimeMode enters into

the continuous-time mode (i.e., disable the

discrete-time equations). In this mode, the continu-

ous state of the FMU can be solved, but the discrete

state has to remain constant (i.e., events cannot be

processed).
� fmi2NewDiscreteStates evaluates the

discrete-time equations (should therefore only be

called in event mode) such as processing the poten-

tial time and state events. Information returned by

this function includes (a) the date of the next time

event (when scheduled), (b) indication if the pro-

cessed event(s) has changed the continuous state

(creating a discontinuity in the state trajectory), and

(c) indication if the discrete state has to be immedi-

ately re-evaluated (e.g., to solve an internal alge-

braic loop).

With FMI-CS, a model is exported with its solver. As

this solver has a passive behavior, an FMU for co-

simulation (FMU-CS) is considered as a slave, and pro-

poses in particular the following C functions in order to be

controlled by a master algorithm31:

� fmi2DoStep performs an integration for a given

duration.
� fmi2SetReal/Integer/Boolean/String

sets a specific input variable to a given value.
� fmi2GetReal/Integer/Boolean/String

gets the current value of a given output variable.
� fmi2GetFMUState and fmi2SetFMUState

are optional (but essential32) functions used to

export/import the model state. They enable to per-

form a rollback during the simulation of the model.

FMI gives generic guidelines on how a master should

manage a set of interconnected FMUs in order to jointly

solve their equations: FMU executions are synchronized

thanks to communication points. These communication
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points, shared by every involved FMU, correspond to

points in the simulated time where (a) the FMU simula-

tion must be stopped, and (b) exchanges of data have to

be performed between FMUs according to their output-

to-input links.

Aside from these guidelines, FMI does not give specifi-

cations for a master algorithm. Consequently, different

master algorithms are currently developed, like FIDE33

(FMI integrated design environment) and DACCOSIM34

(Distributed Architecture for Controlled CO-SIMulation).

Numerous issues related to the distributed numerical reso-

lution of the system32 are still under investigation by the

community (e.g., how to determine the best communica-

tion point interval during the simulation? How to manage

algebraic loop between FMUs?)

4 Proposal and positioning

On the one hand, a co-simulation middleware is required

to manage the interoperability of different M&S tools. On

the other hand, we need a formal solution to rigorously

integrate heterogeneous formalisms.

We propose to tackle these two requirements by defining

a modular co-simulation middleware called MECSYCO. We

integrate tools which are formally heterogeneous by using

DEVS as a pivotal formalism in the following way:

1. Integrate the different tools in DEVS by using a

wrapping strategy (i.e., instead of directly writing

or transforming the models in DEVS, provide

additional mechanisms in order to bridge the gap

between the tools and the DEVS abstract simula-

tor). Hence, each tool can be controlled like a

DEVS simulator and we do not have to implement

the model again.

2. Connect these wrapped tools within a DEVS

coupled model.

3. Simulate the DEVS coupled model using the

DEVS simulation protocol, in order to perform a

co-simulation in an unified way.

We chose DEVS because of its striking capacity to inte-

grate the formal heterogeneity of a co-simulation. Other

M&S formalisms which enable the integration of continu-

ous and discrete dynamics could have been used. For

instance, the HFSS formalism provides several interesting

properties for hybrid system modeling (such as the

dynamic structure14), and has some advantages over

DEVS (e.g., the possibility to represent geometrical sol-

vers35). However, DEVS benefits from a greater amount

of scientific works which have demonstrated over the

years its integrative power. These works are essential in

the context of co-simulation because they also describe

how each specific M&S formalism should be integrated in

a rigorous way, thus giving crucial guidelines and tools for

rigorously designing our wrappers.

So far, we have successfully defined DEVS wrappers

for discrete modeling tools like the MAS simulator

NetLogo,36 and the telecommunication network simulators

NS-3 and OMNeT++/INET.37 Aside from several difficul-

ties met when wrapping NS-3 and OMNeT++/INET

(mainly due to the high level of modeling details offered

by these platforms, as well as to the complexity of the

opening and the distribution of their telecommunication

models), making these discrete modeling tools compliant

with the DEVS simulation protocol was a straightforward

process. The reason is that these platforms have a discrete

modeling paradigm very close to DEVS.

However, according to our experience with

MECSYCO, several difficulties may arise when wrapping

a simulation tool in DEVS. These problems depend mainly

on two criteria:

� The M&S formalism used by the tools may not be

explicitly defined by the software specifications,

and/or may be very different from DEVS.

Accordingly, the challenge is to answer the ques-

tions: what is the formalism used by the tools?

How to bridge the formal gap between this formal-

ism and DEVS?
� The software interface with the middleware may be

difficult to produce as the tools API and the soft-

ware architecture are not always documented and

fully compliant with the DEVS simulation protocol.

Moreover, the software may not be conceived to be

externally manipulated.

Things are getting especially complex with equation-

based tools, as their continuous modeling paradigm is very

different from the discrete DEVS one. Thus, we need to

bridge the gap between the discrete and the continuous

paradigms, and a more complex wrapping strategy based

on the hybrid capacity of DEVS is required. Regarding

this issue, wrapping each of these equation-based tools

(e.g., OpenModelica, Dymola, Matlab/Simulink) sepa-

rately would be very inefficient.

However, most of these tools are compatible with the

FMI standard which brings a generic API to manipulate

equation-based models and their solvers. Thus, in order to

integrate continuous tools into MECSYCO in the more

generically possible way at the software level, we propose

to define DEVS wrappers for the FMI standard. We base

this wrapping on the DEV&DESS formalism to handle the

interactions between the continuous equation-based model

and the discrete-event paradigm of DEVS. Since FMUs for

co-simulation and FMUs for model exchange do not have

the same API and do not convey the same constraints, we

specify a different wrapper for each of them in order to be

fully compliant with the standard. Thanks to these
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wrappers, continuous equation-based models are integrated

in MECSYCO in the following way.

1. The model is specified in a dedicated equation-

based tool (such as OpenModelica).

2. The model is exported as an FMU using the built-

in export features of the tool (consequently, this

feature is mandatory. When not available, only ad

hoc wrappings are possible).

3. This FMU is linked to the wrapper and integrated

in the co-simulation.

Please note that rather than focusing on the distributed

numerical resolution aspects which arise when several

FMUs are directly interconnected, we focus in this paper

on the hybrid simulation issues which arise when an FMU

interacts with a discrete-event component (e.g., a NS-3

model). Indeed, in a hybrid context, the communication

points simulation strategy of FMI faces the following

issues:

� State events occurring between two points of com-

munication are localized at the upper communica-

tion point, pending improvements of the hybrid co-

simulation in the FMI standard.
� New inputs are only taken into account at the next

communication point, no matter when they are

received.

As a result, an effort is required to integrate the operational

software in such a way as to respond to events.

To summarize, our proposition is two-fold and can be

seen at two levels of detail. On the most generic level,

MECSYCO is a co-simulation middleware which focuses

on the formal integration of pre-implemented models by

using a DEVS-based wrapping strategy. This strategy is

supported by all the integrative work around DEVS.10 In

this way, our proposition responds to both the formal inte-

gration and the software interoperability requirements of

CPS co-simulations (detailed in Section 2). On a more spe-

cific level, we propose a way to integrate equation-based

continuous tools into MECSYCO by defining DEVS wrap-

pers based on the hybrid formalism DEV&DESS and the

QSS solver strategy. We use the emerging standard FMI

as a generic way to integrate continuous models at the soft-

ware level. It is important to note that our purpose here is

more focused on the rigorous integration of heterogeneity

in co-simulations rather than the co-simulations efficiency.

Comparing with the related works of the literature, the

focus on reuse of pre-existing models distinguishes our

proposal from multi-paradigm approach like AToM3 (see

Section 2.2). Unlike the other DEVS-based tools of the lit-

erature (like VLE38) whose primary purpose is to design

and simulate models in DEVS, our platform is dedicated

to the DEVS wrapping and the co-simulation of already

existing models and simulators. In contrast with HLA (see

Section 2.1), the formal integration of MECSYCO is dri-

ven by DEVS wrapping. We also specify the whole soft-

ware architecture and synchronization algorithm (Section

5.3) making two implementations of MECSYCO intero-

perable. In contrast to the Mosaik co-simulation middle-

ware,9 we can rigorously integrate M&S tools which are

formally heterogeneous thanks to our DEVS framework.

Furthermore, in contrast with other master algorithms

which are dedicated to the co-simulation of FMU compo-

nents (e.g., DACCOSIM34), MECSYCO is not limited to a

specific simulation software or norm.

5 The MECSYCO platform
5.1 Generalities

MECSYCO36 is a middleware dedicated to the co-

simulation of CPSs that enables to interconnect several

pre-existing and heterogeneous (both at the software and

formal levels) M&S tools. For this purpose, MECSYCO

manages the data exchanges between these tools, and syn-

chronizes their executions in a parallel and fully decentra-

lized way.

The co-simulation engine of MECSYCO is based on the

DEVS formalism in order to integrate tools which use dif-

ferent modeling formalisms (e.g., discrete-event, Ordinary

Differential Equation (ODE)). Each tool is integrated into

the middleware thanks to a DEVS wrapping strategy: a

wrapper must be designed so the tool can be controlled like

a DEVS simulator. Thus, heterogeneous tools can be homo-

geneously co-simulated in the form of a DEVS system.

MECSYCO is based on the AA4MM (agents & artifacts

for multi-modeling) paradigm39 (from an original idea of

Bonneaud40), proposing to see a heterogeneous co-

simulation as a multi-agent system. Within this scope, each

couple model/simulator corresponds to an agent, and the

data exchanges between the simulators correspond to the

interactions between the agents. Thus, the co-simulation of

the system corresponds to the dynamics of interaction

between agents. Agent autonomy enables encapsulating

legacy software by the use of wrappers.41 Originality with

regard to other multi-agent multi-model approaches is to

consider the interactions in an indirect way thanks to the

concept of passive computational entities called artifacts.42

MECSYCO implements the AA4MM concepts accord-

ing to the DEVS simulation protocol for coordinating the

executions of the simulators and managing interactions

between models. By following the multi-agent paradigm

from the concepts to their implementation, MECSYCO

ensures a modular, extensible (i.e., features can be easily

added such as an observation system) decentralized and

distributable parallel co-simulation. The MECSYCO mid-

dleware is completely modular and can be distributed on

several machines which may run on different OSs (e.g.,
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GNU/Linux, Mac OS, Microsoft Windows). It is currently

used to study green cloud computing43 and for the M&S

of smart electrical grids in the context of a partnership

between LORIA/Inria (French computer science research

institutes) and EDF R&D (main French electric utility

company).44

In the following, we describe these concepts and their

specifications.

5.2 MECSYCO concepts

MECSYCO relies on four concepts to describe a co-

simulation.

A model mi is a partial representation of the target sys-

tem implemented in a simulation software si (cf. corre-

sponding symbol in Figure 1(a)). A model has a set of

input ports x1::ni and output ports y1::mi .

An m-agent Ai (cf. corresponding symbol in Figure

1(b)) manages a model mi and is in charge of the interac-

tions of this model with the other ones. Therefore, the m-

agent is equivalent to a parallel abstract simulator for the

models.

Each m-agent Ai sees its model mi as a DEVS atomic

model thanks to its model artifact I i (cf. corresponding

symbol in Figure 1(d)). Therefore, I i acts as a DEVS

wrapper for mi (i.e., it implements the DEVS simulation

protocol functions for controlling mi evolution through si).

Each interaction from an m-agent Ai to an m-agent Aj

is reified by a coupling artifact Ci
j (cf. corresponding sym-

bol in Figure 1(c)). A coupling artifact Ci
j works like a

mailbox: the artifact has a buffer of events where the m-

agents can post their external output events and get their

external input events. Accordingly, a coupling artifact

plays two roles: for Ai, it is an output coupling artifact,

whereas for Aj it is an input coupling artifact. Coupling

artifacts can transform data exchanged between the models

using operations that can be for instance, spatial and time

scaling operations (e.g., converting kilometers to meters or

hours to minutes).

According to the multi-agent paradigm, m-agents only

have a local knowledge of the coupled model interconnec-

tions. The set of internal couplings between coupled model

IC is split such as an m-agent Ai only knows which input

coupling artifacts correspond to its model input ports, and

which output coupling artifacts correspond to its model

output ports. We define the set of input links INi of Ai as

being composed of the couples (j, k) mapping the input

coupling artifact Cj
i with the input port xk

i . We define the

set of output links OUTi of Ai as being composed of the

couples (n, j) mapping the output port yn
i with the output

coupling artifact Ci
j.

The connection of the output ports of a model mi with

the input ports of a model mj is done by the coupling arti-

fact Cj
i. The link from a model mi to a model mj (noted as

Li
j) corresponds to the tuple (n, k, o

i, n
j, k). It maps the output

port yn
i with the input port xk

j and applies the on
k operation

to transform the event between these two model’s repre-

sentation. By default, an operation corresponds to the iden-

tity operation id. Table 2 and Figure 3 illustrate how a

DEVS coupled model (shown in Figure 2) is described in a

decentralized and distributable way thanks to MECSYCO.

5.3 Operational specifications

The behavior of each m-agent corresponds to the DEVS

conservative parallel abstract simulator, based on the

Table 2. Decentralized MECSYCO co-simulation of the DEVS
coupled model of Figure 6.

Descriptions Notations

Output links of m1 OUT1 = f(1,2),(2,3)g
Input links of m1 IN1 = f(2,1)g

Output links of m2 OUT2 = f(1,1)g
Input links of m2 IN2 = f(1,2),(3,1)g

Output links of m3 OUT3 = f(1,2)g
Input links of m3 IN3 = f(1,1)g

Links from m1 to m2 L12 = f(1,2,o1,1
2,2)g

Links from m1 to m3 L13 = f(2,1,o1,2
3,1)g

Links from m2 to m1 L21 = f(1,1,o2,1
1,1)g

Links from m3 to m2 L32 = f(1,1,o3,1
2,1)g

DEVS: discrete-event system specification; MECSYCO: Multi-agent

Environment for Complex-SYstem CO-simulation.

Figure 2. Bloc diagram view of a DEVS coupled model.
DEVS: discrete-event system specification.

Figure 1. Symbols of the MECSYCO components.
MECSYCO: Multi-agent Environment for Complex-SYstem
CO-simulation.
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Chandy–Misra–Bryant (CMB) algorithm.45,46 This algo-

rithm is proven to be deadlock-free and to respect the

causality constraint18 (i.e., to ensure that the ‘‘execution of

the simulation program on a parallel computer will pro-

duce exactly the same results as an execution on a sequen-

tial computer.’’)47

As we focus on the rigorous formal integration instead

of performances, a conservative algorithm is chosen

because it does not impose specific ability like rollback to

the model we want to integrate.

Within this behavior, each m-agent Ai shares its earli-

est output time estimate (EOTi) in its environment. Here

EOTi corresponds to the date (in simulation time), below

which Ai guarantees it will not send new external output

events; Ai shares EOTi as the link time of each of its out-

put coupling artifact. The link time of a coupling artifact

Ci
j is noted LTi

j and corresponds to the simulated time (ini-

tially equals 0) up to which Ai has simulated the links

from mi to mj.
45

Every m-agent Ai uses the link times of all of its input

coupling artifacts to compute its earliest input time esti-

mate (EITi). This EITi corresponds to the date (in simu-

lated time) below which Ai will not receive any new

external input event. EITi corresponds to the minimum

link time of all of Ai‘s input coupling artifacts.

For each m-agent Ai, all events (internal or external)

with a timestamp inferior or equals to EITi are said to be

safe to process. In order to fulfill the causality constraint,

each m-agent must process only safe events and in an

increasing timestamped order.

Each EOTi is given by the Lookaheadi function:

Lookaheadi()=minfnti, EITi +Di, tini +Di
g ð3Þ

with nti the next internal event time of mi, tini
the time

of the earliest event waiting to be processed in Ai’s input

coupling artifact, and Di(Di . 0) the minimum propaga-

tion delay of mi. This minimum propagation delay corre-

sponds to the minimum delay (in simulated time) below

which the processing of an external event cannot schedule

a new internal event in a model mi. Di has to be deter-

mined for each model mi in the co-simulation.

This behavior, enabling simulation of a model until a

time Z, is formalized within the MECSYCO paradigm by

the Algorithm 1. This algorithm is based on the artifact

specifications detailed below.

A coupling artifact Ci
j proposes six functions toAi andAj:

� post(en
out, ti) stores in the artifact buffer and

transforms (according to the Ci
j operation) the exter-

nal output event en
out generated at the (simulated)

time ti through the output port yn
i ;

� getEarliestEvent(k) returns the earliest external

input event for the kth input port of mj, xk
j ;

� getEarliestEventTime(k) returns the time of the ear-

liest external event for xk
j ;

� removeEarliestEvent(k) removes the earliest exter-

nal event for xk
j , from the artifact buffer;

� setLinkTime(ti) sets LTi
j to ti; and

� getLinkTime() returns LTi
j.

In order to manipulate mi, each model artifact I i pro-

poses the following DEVS simulation protocol functions to

Ai (they have to be defined for each simulation software):

� init() initializes the model mi. It sets the parameters

and the initial state of the model;
� processExternalEvent(eini

,ti,x
k
i ) processes the exter-

nal input event eini
at simulation time ti in the kth

input port of mi, xk
i ;

� processInternalEvent(ti) processes the internal event

of the model mi scheduled at time ti;
� getOutputEvent(yn

i ) returns en
outi

, the external output

event at the nth output port of mi, yn
i ; and

� getNextInternalEventTime() returns the time of the

earliest scheduled internal event of the model mi.

5.4 Implementation

MECSYCO is currently implemented in Java (available at

http://mecsyco.com under AGPL) and C++. In order to

make these two versions interoperable together and to per-

form distributed co-simulations, MECSYCO relies on the

JSON format and the OpenSplice implementation of the

OMG (Object Management Group) standard DDS (data dis-

tribution service). Using OpenSplice, coupling artifacts are

divided into two parts (reader and writer) in order to split the

co-simulation. DDS being based on the publish-subscribe

communication pattern, writer coupling artifacts play the

role of publishers while reader coupling artifacts act as sub-

scribers. Each writer coupling artifact sends data to its reader

coupling artifact using a dedicated DDS topic (see Figure 4).

The UML (Unified Modeling Language) diagram of

Figure 5 shows how we implement the MECSYCO con-

cepts following an object-oriented programming. This

Figure 3. Graphical representation of the MECSYCO
co-simulation of Table 2.
MECSYCO: Multi-agent Environment for Complex-SYstem
CO-simulation.
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implementation is in keeping with our multi-agent paradigm

as each MECSYCO concept corresponds to a class of

object, and each autonomous m-agent corresponds to a

thread. We retain then the advantages of our paradigm: the

software architecture is composed of a set of modular soft-

ware bricks, enabling decentralized and parallel simulations.

In the following section, we detail how we wrap the

FMI standard in DEVS using the hybrid M&S capacity of

DEV&DESS.

6 DEVS wrapping of the FMI standard

As with any tools in MECSYCO, integrating an FMU

requires to connect it to the co-simulation with a model

artifact. This one exposes a DEVS view of the FMU, and

makes the FMU handle discrete events. To define such a

model artifact, we can rely on the DEV&DESS formalism

as it can be embedded into DEVS, and as it offers a sound

framework for describing hybrid systems.

As defined by Zeigler,22 the DEVS version of a

DEV&DESS model is composed of three components,

each of them formalized as a DEVS atomic model. With

this structure, a DEV&DESS model can be incorporated

into a larger DEVS schema as a coupled model.

Consequently, the DEV&DESS model can be simulated

using the DEVS simulation protocol. The three compo-

nents composing the model are.

1. A continuous component describing the evolution

of the continuous part of the system according to

Algorithm 1 Ai m-agent’s behavior.

INPUT: INi, OUTi,Dti
OUTPUT:

nti  I i.getNextEventTime()
tini
 +∞

EOTi  0
EITi  0

. While the end of simulation.
While (:endOfSimulation) do
EITi  +∞
tini
 +∞

for all (j,k)∈ INi do

if Cj
i.getLinkTime()< EITi then . Compute EITi.

EITi  Cj
i.getLinkTime()

end if

if Cj
i.getEarliestEventTime(k) < tini

then . Take the next external event.

tini
 Cj

i.getEarliestEventTime(k)
eini  Cj

i.getEarliestEvent(k)
p k . Save the corresponding input port.
c j . Save the corresponding coupling artifact.

end if
end for

. Compute EOTi and update output coupling artifact.
if EOTi 6¼Lookaheadi(nti, EITi, tini

) then
EOTi  Lookaheadi(nti, EITi, tini

)
8(k,j)∈OUTi : Ci

j.setLinkTime(EOTi)

end if
. Find the next secured (internal or external) event.

if (nti ≤ tini
) and (nti ≤ EITi) and (nti ≤Z) then . If the event is internal.

I i.processInternalEvent(nti) . Process the event.
for all (k,j)∈OUTi do . Send the resulting external output event.

eoutki  I i.getOutputEvent(yk
i )

if eoutki 6¼1 then

Ci
j.post(eoutki , nti)

end if
end for
nti  I i.getNextInternalEventTime()

else if (tini
< nti) and (tini

≤ EITi) and (tini
≤Z) then . If the event is external.

I i:processExternalEvent(eini,tini
,x

p
i ) . Process the event.

Cc
i :removeEarliestEvent(p)

nti  I i.getNextInternalEventTime()
end if

end while
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continuous inputs, and producing continuous

outputs.

2. An event-detection function determining when

state events occur, based on the continuous states

of the model (i.e., the FMU state in our case).

3. A discrete-event component describing the evolu-

tion of the discrete part of the system. This compo-

nent describes the behavior of the model in the

discrete world, that is to say how it schedules inter-

nal events, how it produces and reacts to discrete

inputs (i.e., external events), and what are the

impacts of state events. Potentially, for each of

these events, the event-based component can

change the whole DEV&DESS states, meaning (a)

its own state, (b) the continuous component state

(creating a discontinuity in the state trajectory),

and (c) the event-detection function.

As two versions of FMI exist, we propose two strategies

to wrap FMUs in DEVS using DEV&DESS. The main

difference between these strategies, which are detailed

below, is the location of the continuous system solver: it is

embedded into the FMU with FMI-CS, whereas it is imple-

mented in the wrapper with FMI-ME. Each of these wrap-

pers have pros and cons making them complementary.

1. FMI-ME proposes primitives able to handle hybrid

models. Moreover, as stated in Section 3.2, an

FMU for model exchange (FMU-ME) needs to be

associated with a solver to be simulated. Then, our

DEV&DESS wrapper plays the role of a hybrid

solver for this FMU-ME. In order to manage the

continuous-state simulation, the original Zeigler’s

DEVS version of DEV&DESS relies on a quan-

tized integrator approach. The rationale behind this

choice is that, quantized integrators have a

discrete-event behavior as they quantize the state

space instead of discretizing the time dimension.

Thus, a quantized integrator naturally bridges the

gap between the continuous and the discrete-event

worlds26: its working principle is already based on

the integration of inputs events and on the detec-

tion of state events23 (i.e., localizing when the state

trajectory crosses a given threshold). As a result, it

makes perfect sense to keep this choice and to

implement a quantized integrator in our wrapper.

More precisely, we chose the QSS approach23

(mainly developed by Kofman) as it offers some

of the most advanced mathematical solutions for

solving equation-based systems, while exhibiting

striking simulation performances under some con-

ditions. We currently have implemented QSS148

(i.e., first order numerical method) and QSS225

(i.e., second order numerical method) solvers for

FMU.

Figure 5. UML description of the MECSYCO software architecture.
MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation; UML: Unified Modeling Language.

Figure 4. Distribution of a MECSYCO co-simulation.
DDS: data distribution service; MECSYCO: Multi-agent
Environment for Complex-SYstem CO-simulation.
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2. FMI-CS embeds a solver but does not yet include

the primitives required for managing discrete-

event behaviors32,33,49 (e.g., the date of the next

scheduled time event cannot be obtained from a

FMU). Therefore, we consider that FMI-CS only

specifies the continuous behavior of the system.

We need then to specify its discrete behavior (i.e.,

the equivalent of the DEV&DESS event-detection

function and the discrete-event component) within

our wrapper. Additionally, specifying the discrete-

event behavior outside the FMU enables a more

flexible wrapping: different discrete-event beha-

viors can be associated with a single FMU depend-

ing on the co-simulation context (e.g., the discrete-

event component can produce a discrete output

signal by regularly sampling the continuous output

of an FMU, or send events when the continuous

output signal of the same FMU reaches a given

threshold). Besides, when wrapping an FMU-CS

in DEVS, we have to take account of an additional

constraint: the FMU is exported with its solver,

and this solver cannot belong to the QSS family

because, as stated before, FMI-CS cannot handle

such a discrete-event behavior. In consequence, we

cannot use a QSS solver anymore here, and so we

need to adapt the original DEVS version of

DEV&DESS in this model artifact.

The two next sections detail our wrappers and their

assessments.

7 Wrapping of FMU for model exchange

Figure 6(a) shows the architecture of our QSS2 solver for

FMU. This architecture mainly follows the one defined by

Kofman, but also has slight differences because two criteria

were not handled by the original QSS specifications: (a)

due to the FMU nature, the model is clearly separated from

its solver, and (b) discrete events may cause discontinuities

in the continuous-state trajectory. In the following sections,

we highlight these differences. First, in order to be under-

standable by non-specialist, we give an overview of the

QSS working principle (Section 7.1). Then, we describe

how our QSS solver works (Section 7.2) and how it inter-

acts with the other components of DEV&DESS: the state-

event detector (Section 7.3) and the discrete-event behavior

component (Section 7.4). This whole structure of the wrap-

per is detailed in Figure 6(b) and corresponds to a DEVS

coupled model, managed by a classic DEVS coordinator

(not detailed here for sake of concision). This coordinator is

directly controlled by the API of the MECSYCO wrapper.

Finally, Section 7.5 details the assessment of the wrapper.

7.1 The QSS solver strategy

In order to explain the QSS method and to highlight its ori-

ginality, we compare the behaviors of a first order quan-

tized integrator (i.e., QSS1) and of a classical first order

time-discretization integrator (i.e., Euler):

� Given the state x of a continuous system at a current

time ti, a Euler solver considers the first derivatives

Figure 6. Bloc diagram view of the DEVS wrapper for FMU-ME.
DEVS: discrete-event system specification; FMU-ME: functional mockup unit for model exchange; QSS: quantized state systems.
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to remains constant during a time Dt. Based on this

assumption, the solver infers the state of the system

at the time tj = ti +Dt. Hence, the solver has a dis-

crete time-stepped behavior with a time step equal

to Dt (see Figure 7(a)).
� Given the state x of a continuous system at a current

time ti, a QSS1 solver considers the first derivatives

to remain constant until the system trajectory reach

one of the thresholds x6Dx. Based on this assump-

tion, the solver infers the time tj (ti \ tj) when the

system state and derivatives needs to be updated.

Hence, the solver has a discrete-event behavior

(which can be described by a DEVS model) where

events correspond to continuous-state updates (see

Figure 7(b)).

QSS2 uses a strategy similar to QSS1, but it performs a

second order approximation. Hence, it considers that the

second derivatives remain constant between events. Then,

between events the system trajectory is approximated by a

parabolic trajectory. An event now occurs when this para-

bolic trajectory differs from a linear one (which may cor-

respond to a first order approximation of the system

trajectory) of a quantity Dx (see Figure 7(c)).

7.2 Continuous behavior simulation with QSS

In the original QSS specifications, the solver interacts with

two clearly separated function blocks which respectively

define the output and the input behaviors of the model. In

our wrapper, these blocks are directly embedded inside the

FMU. Therefore, the outputs (both discrete and continu-

ous) of the solver correspond to the FMU ones. The output

ports of our wrapped coupled model are directly linked to

the FMU ones. However, according to the standard, the

FMU discrete output ports produce piecewise-continuous

signals (i.e., these signals are always present no matter the

time instant).33 In order to generate discrete-event output

signals (i.e., signals that are present only at some instances

in time) for these discrete ports, we propose an optional

mode in our wrapper which filters the output of the FMU

in order to generate signals (i.e., external events) only at

the moments of the time events and/or the state events.

According to the QSS approach, each variable xi of the

FMU continuous-state vector is associated with a DEVS

quantized integrator
Ð

i
. Each integrator

Ð
i
takes in input the

first and second derivatives of xi respectively noted ui and

mui, and produces in output the new values and slopes of

xi, respectively noted qi and mqi. These integrators

numerically solve the equation in an asynchronous way. A

DEVS atomic model f is in charge of computing the deri-

vative slopes, handling the inputs of the equation-based

system (therefore, the model has a set fin1::inmg of input
ports, corresponding to the FMU ones) and interacting

with the integrators. In the original QSS specifications, the

equation-based system is directly embedded into f . This is

not feasible in our case because the system is already

embedded in an FMU. As a consequence, our solver f also

manages the interaction with the FMU in the following

way:

� When it has to update the FMU continuous state

(e.g., when it receives new values and slopes for a

continuous-state variable, from an integrator), f first

switches the FMU into the continuous mode (using

fmi2EnterContinuousTimeMode) if it was

not already, and call the fmi2SetContinuous
States function.

� When it has to update the value of an input variable

of the FMU (i.e., when it receives input events

through ini ports), f first checks the variability of

the variable into the XML description file.

Depending if this variability is continuous or dis-

crete, f calls the fmi2EnterContinuous
TimeMode or fmi2EnterEventMode function

in order to set the FMU in the appropriate mode (if

it was not already). Then, f checks the input vari-

able type in the XML file, and updates its value in

Figure 7. Comparison of different solvers strategies.
QSS: quantized state systems.
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the FMU using fmi2SetReal/Integer/
Boolean/String function. If the updated vari-

able is discrete, f asks (several times if required by

the FMU) the FMU to re-evaluate its discrete state

using fmi2NewDiscreteStates.
� When it receives any event at its input ports (e.g.,

from the integrators or at a ini port), f updates the

clock of the FMU to the timestamp of the events

using the fmi2SetTime function.
� When it has to get the derivative ui (e.g., in order

to compute its slope mui and to forward these two

values to
Ð

i
), f uses the fmi2GetDerivatives

function of the FMU.

As shown in Figure 6(b) the solver interacts with two

atomic models in order to simulate the discrete behavior

of the FMU. These models correspond to the ones defined

by Zeigler in the DEVS version of DEV&DESS.

7.3 State-event detector

The state-event detector atomic model is in charge of the

accurate localization of state events during the simulation

of the continuous equations. In order to take advantage of

the QSS approach for detecting state events, we make the

hypothesis that the state-event thresholds of the FMU are

a priori known (either because this information can be

obtained from the model designer or from the XML

description file). In the original hybrid QSS specifica-

tions,26 Kofman suggests two alternate ways of feeding

the state-event detector from the QSS solver.

1. It can receive the variable values q and derivatives

u and mu. This way, as stated by Kofman, the

detector only ‘‘has to find the roots of a second-

degree polynomial’’26 in order to find the time of

the next state event (in the absence of new state

and derivative updates received from the solver).

Then, the detector schedules an internal event at

the time of this state event in order to produce an

output, notifying the occurrence of the event.

2. It can only receive the derivatives u and their

slopes mu directly from the output ports of f . In

this case, in addition to find the time of the next

state event and schedule the resulting internal

event, the detector has to integrate (in parallel of

the system resolution) the variables concerned with

the thresholds.

Kofman opts for the second option because it does not

imply any modification of the QSS solver. However, the

drawback of this option is that the detector cannot be

aware of the discontinuities in the continuous-state trajec-

tory caused by discrete events processing (time, state or

external). This is why we choose the first option in our

wrapper: the model f forwards immediately to the detector

all the updates of the continuous states vector q and its

derivatives u and mu, through a dedicated output port.

7.4 Discrete-event behavior simulator

The DEVS atomic model is in charge of managing the

occurrences of discrete events (state, time and external).

After each modification of the discrete state of the FMU

(i.e., after each external/time/state-event processing in the

FMU), this component (a) retrieves the time tn of the

next time event scheduled in the FMU, and (b) checks if

the event processing has created a discontinuity in

the continuous-state trajectory (by checking the infor-

mation returned by the last call of the FMU

fmi2NewDiscreteStates function). The DEVS

component schedules an internal event at each tn. It also

receives notifications of state-event occurrences from the

detector. Moreover, all discrete inputs of the FMU are first

sent to the DEVS component before being immediately

forwarded to the QSS solver. This enables the DEVS com-

ponent to be aware of discrete-input occurrences, and so

to interact with the FMU (i.e., to update tn and check dis-

continuities) after the discrete input was processed by the

solver. Therefore, as shown in Figure 6(b), we distinguish

in the QSS solver interface between:

� The set finc
1, :::, in

c
kg of input ports, corresponding

to the continuous inputs of the FMU. These ports

are directly connected to the input ports of the

wrapper. This way, the solver can directly receive

continuous inputs of the FMU from the other simu-

lation tools of the co-simulation.
� The set find

1, :::, in
d
l g of input ports, corresponding

to the discrete inputs of the FMU. These ports are

duplicated in the DEVS component interface.

As soon as it computes a time event or it receives a

state-event notification, the DEVS component sends an

internal event notification to the QSS solver through a

dedicated port. The solver processes this notification in

the same way it does with discrete inputs: it sets the FMU

to the discrete mode and asks the FMU to re-evaluate its

discrete state, thus causing the time/state event to be pro-

cessed. The only difference is that, as no discrete input of

the FMU corresponds to this internal event notification

port, the solver does not change any input variable of the

FMU. Finally, as soon as the DEVS component detects a

discontinuity in the continuous-state trajectory, it immedi-

ately sends a reset event to the QSS solver through a

dedicated port. According to Zeigler’s DEV&DESS speci-

fications, this event resets both the quantized integrators

and the f model state, enabling the QSS solver to handle

the discontinuity.
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7.5 Implementation and assessment

We have implemented this wrapper in the Java version of

MECSYCO. In order to interact with the FMU, we rely on

JavaFMI.50 As this library only covers FMU-CS, we pro-

posed an extension to interact with FMU-ME. We check

the behavior of our wrapper by reproducing two QSS2 use

cases proposed by Kofman.26 The first one corresponds to

a DC-AC inverter circuit equipped with switches con-

trolled by discrete inputs, which are sent according to a

pulse width modulation strategy. The second example cor-

responds to a ball bouncing downstairs, with state events

occurring twice per bounce (one when the ball hits the

ground and one when it leaves it). Note that, with this

example, state-event occurrences depend on two

continuous-state variables: when both x and y positions

match the stairs location (i.e., when y= floor(h+ 1� x)).
We translated Kofman’s models into Modelica language

(see Figures 8(a) and 9(a)) and exported them in FMUs

for model exchange, using OpenModelica. We found

(visually) similar simulation results (see Figures 8(b) and

9(b)) and performances (i.e., a similar number of internal

events) with our solver and with the Kofman one.

As these two models do not include discontinuities in

the continuous-state trajectory, we also propose another

use case to test this aspect with our solver (see Figure

10(a)). This use case corresponds to the simulation of a

barrel-filler factory inspired by the one proposed by

Praehofer.13 In this factory, we consider a queue of barrels

waiting to be filled, on a conveyor. The factory fills only

one barrel at a time. As soon as the water reaches a given

level in the barrel, the barrel is carried away by the con-

veyor, and the filling process starts again for the next

empty barrel. A tank stores the water to fill the barrels.

The flow rate of water filling the barrel decreases with the

level of water in the tank. A valve controls the flow of

Figure 8. Simulation of the bouncing ball system.

Figure 9. Simulation of the DC-AC inverter circuit.
MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation.

Camus et al. 1113



water between the tank and the barrel. The valve can only

be in two states ‘‘open’’ (water goes from the tank to the

barrel) or ‘‘closed’’ (the filling process is stopped). The

continuous dynamics of the model corresponds to the level

of water in the current barrel and in the tank. The model

receives discrete inputs controlling the valve. State events

correspond to the moment were the current barrel is full.

At this point, the level of water in the current barrel is

reset, to represent the barrel switching. The model pro-

duces a discrete output signal corresponding to a regular

sampling of the level of water in the barrel. This signal

can be for instance sent to a controller for monitoring the

filling process. We found (visually) similar results when

simulating this model with our QSS2 solver (see Figure

10(b)) and with OpenModelica solvers.

8 Wrapping of FMU for co-simulation

As stated in Section 6, we need the three components of

DEV&DESS to integrate an FMU into DEVS. An FMU-

CS provides the continuous behavior and we need to define

the two remaining components (i.e., the state-events detec-

tor and the discrete-behavior component) in the wrapper.

These components are dependent of the wrapping context.

� The discrete-behavior component has to specify the

behavior of the FMU in the discrete world. This

component corresponds to a DEVS atomic model

able to interact with the FMU component. For

example, this component can sample a continuous

output of the FMU by regularly scheduling internal

events, and producing external output events,

according to the current values of the FMU vari-

ables, using fmi2GetReal.
� The state-events detector has to specify the condi-

tion of occurrence of state events, according to the

FMU state. This detector corresponds to a Boolean

function S ! ftrue, falseg with S the set of the

FMU states. For example, this function should

return true (i.e., a state event occurs) only when a

variable of the FMU is superior or equals to a given

value.

In the following, we detail how we implement the main

DEVS primitives into the wrapper.

8.1 Time of the next internal event

In our DEVS wrapper for FMU-CS,51 we rely on the FMI

specifications to simulate the continuous output of the

Figure 10. Simulation of the barrel-filler factory.
MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation.

Algorithm 2 Bisectional search for state-event localization.

INPUT: �T ∈R+
0 ,m∈N+

0
δt 0
�t �T
for 1 to m do

fmu2RollBack()
�t �t=2
fmi2DoStep(δt+�t)
if :stateEventOccurence() then

δt δt+�t
end if

end for
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component: we consider that the FMU produces outputs at

a sequence of predefined communication points. From our

DEVS point of view, these communication points are seen

as internal events producing external output events. In the

same way, from our DEVS point of view, we see updates

of the continuous input values received by the FMU as

input events.

According to the DEVS semantics, the getNextIn
ternalEventTime() function must return the date of

the earliest scheduled internal event in the model. In the

DEV&DESS context, this date corresponds to the mini-

mum between:

� the date of the next internal event scheduled in the

discrete-event component;
� the date of the next communication point of the

FMU; and
� the date of the next state event.

Getting the first two dates is trivial as they are a priori

known. Things get more complex for the state events:

because of the numerical resolution of the equational

model, state events can only be detected after each inte-

gration step of the FMU, and their localization in time can

only be approximated.

In order to get the date of the next state event, we need

to perform an exploration with the FMU to see if a state

event will occur before its next communication point. As a

consequence, the component will always be ‘‘in the future’’

compared with the current simulation time. According

to the DEVS semantics, the getNextInternal
EventTime() function must not change the state of the

model. Indeed, it is imperative to be able to come back to

the previous state of the FMU, corresponding to the only

legitimate state from the simulation point of view. The roll-

back capability of the FMU assures this feature as long as

no new integration step is performed.

When a state event is detected during an exploration, we

perform a bisectional search16,52 in order to localize the state

event as precisely as possible in the time. This search is for-

malized by the Algorithm 2 which, given the initial integra-

tion step DT and a number of iterations m (formalizing the

search precision), positions the FMU as close as possible to

the state-event occurrence. The algorithm basically pro-

gresses by a succession of integration steps whose duration

dt is adapted according to state-event occurrences, and fol-

lowing a dichotomous strategy. As the original state must

always be accessible, and as only one integration step can

be canceled at a time, the algorithm always goes back to the

legitimate state before performing a new integration step.

8.2 Events processing

According to the DEV&DESS semantics, when an event

(internal, external or state event) occurs at simulated time t,

the equational component describes the continuous evolu-

tion of the system until t, and the event is processed by the

discrete-event component. This behavior is translated in our

model artifact as follows.

When the processExternalEvent(eini
,t,xk

i ) func-

tion is called to report the occurrence of an external input

event eini
into the xk

i input port, the first step consists in

rolling back the FMU to its previous state (using the

fmu2RollBack() method). This one corresponds to, as

stated in the previous section, the only legitimate state

from the simulation point of view. Then, the FMU per-

forms an integration step until t (using the fmi2DoStep
method) in order to reach the point where the event occurs.

Finally, when xk
i is a continuous port, the FMU is parame-

trized accordingly (using the fmi2SetReal/Integer/
Boolean/String method). If xk

i is a discrete port, the

external transition function of the discrete-event compo-

nent is triggered in order to process eini
.

Similarly, when the processInternalEvent(t)
function is called to process the next internal event, the

FMU is rolled back to its previous state and an integration

step is performed until t (using the fmi2DoStep method).

On the one hand, if the next internal event corresponds to

a communication point of the FMU, then the model arti-

fact retrieves the continuous output ports values (using the

fmi2GetReal/Integer/Boolean/String method),

and produces the external output events accordingly. On the

other hand, if the next internal event corresponds to a state

event or the next internal event of the discrete-event compo-

nent, then the internal transition function of this latter is

called, which could produce external output events.

9 Discussion

We have presented in Section 5 the whole specification of

the MECSYCO middleware dedicated to the co-simulation

of CPS using a DEVS wrapping strategy. MECSYCO

relies on the formal guarantees offered by DEVS and on

the practical guidelines offered by the numerous integra-

tive works around DEVS in the literature to rigorously

integrate models written in different formalisms.

As a consequence, MECSYCO inherits the DEVS lim-

itations (i.e., if a M&S tool uses a formalism that cannot

be integrated in DEVS, then the tool cannot be integrated

in MECSYCO). We also stress that in order to ease the

wrapping of tools, we use the classical version of the

DEVS formalism (i.e., we do not consider the parallel

DEVS formalism here): this prevents us making assump-

tions on how an existing model reacts to simultaneous

event. As a consequence, simultaneous events may not be

taken into account in a reproducible way (i.e., their pro-

cessing order may vary, which may impact the results).

The MECSYCO co-simulations are coordinated in a

decentralized and conservative way with a parallel
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execution thanks to the CMB algorithm. Having a conser-

vative algorithm eases the integration of tools by not

requiring the rollback features. However, it is worth noting

that depending on the co-simulation characteristics, paral-

lel optimistic or sequential co-simulation execution can be

more efficient.

Even though the models can be interfaced from a soft-

ware and formal perspective with MECSYCO, there is no

guarantee that they can be composed in a meaningful way

(i.e., resulting in a co-simulation that is semantically

valid).53 Hence, every MECSYCO co-simulation and

every DEVS wrapper must be carefully validated and veri-

fied in order to bring exploitable results. The verification

of the MECSYCO implementation was done empirically

through several use cases (notably in collaboration with

EDF which was able to check the results against a real

system,44 and when studying green cloud computing43),

but no formal verification was performed.

In Section 6, we showed how FMU components can be

wrapped into DEVS. The integration of the FMI standard

gives a way (in term of software interface) to integrate at

once continuous models developed using various tools

(e.g., Dymola, MATLAB/Simulink). We stress that,

according to our wrapping strategy, we do not directly

map an FMU into a DEVS model but rather provide addi-

tional mechanisms (using QSS and DEV&DESS) in order

to control an FMU like a DEVS simulator. We stress that

as we base this wrapping directly on the DEVS protocol,

this work is not limited to the MECSYCO platform, but

can be implemented in any DEVS-based platform. We

proposed two wrappers in order to integrate two comple-

mentary kinds of FMU proposed by FMI (namely model

exchange and co-simulation).

With our DEVS wrapping of FMU-ME, we define a

hybrid QSS solver tailored to the FMI standard. At this

point, other QSS versions of the literature54,55 that can

simulate hybrid Modelica models, deserve to be cited. Our

solver can also simulate models written in Modelica, as

soon as they are exported into an FMU-ME. However, the

originality is that our QSS solver can also solve models

written in any of the numerous software compliant with

FMI for model exchange (e.g., MATLAB/Simulink). Yet,

it is important to note that FMI prevents us to fully exploit

all the performances of the QSS method. Indeed, FMI does

not allow to decompose the continuous system in order to

individually update the continuous-state vector elements.

As a result, the QSS algorithm (i.e., the integrators) cannot

solve the system asynchronously. Hence, this limit of the

FMI standard could make QSS inefficient for solving large

ODE systems. Moreover, as so far, we only provided a

QSS2 solver which is only of order 2, we are still strongly

limited to simple non-stiff equation-based models. In order

to be able to simulate more realistic use cases, we plan in

future works to implement other QSS methods such as

QSS356 (of order 3), and LIQSS257 (of order 2, but for

stiff systems).

In the case of FMU-CS, we would like to underline the

fact that, whereas our wrapping of FMU for model

exchange is adapted both for FMI 1.0 and 2.0 versions,

our wrapping of FMU-CS is only adapted for FMI 2.0.

This is because we needed the rollback capacity of the

FMU which is only available in the latest version of the

standard. Besides, this rollback capacity is only optional in

FMI 2.0. Consequently, our DEVS wrapper is unable to

handle an FMU-CS which does not implement this feature.

It is also worth noting that we made the assumption that

FMUs for co-simulation always accept the desired integra-

tion step. This assumption is not trivial because the FMI

standard does not prescribe an FMU to reject the required

integration step to prematurely stop the numerical integra-

tion of the system.32 Depending on the solver exported

within the FMU, it could happen for instance when the

estimated error becomes too large or when the solver has a

fixed step size incompatible with the required integration

step. Thus, our wrapper may not be compliant with all

FMU-CS behaviors. As a result, when exporting a model

into an FMU-CS for a MECSYCO wrapping purpose, the

solver must be carefully selected (when available). In par-

ticular, solvers with fixed step size should be avoided

here.

These two wrappers can be considered as complementary:

� FMU-ME wrapper can be used to integrate any

hybrid system whose continuous behavior can be

simulated by a QSS solver.
� FMU-CS wrapper can be used to integrate any

purely continuous system which can be simulated

with a solver compliant with FMI and the afore-

mentioned assumptions. An ad hoc discrete beha-

vior can be specified in the wrapper if needed.

Please note that, if some continuous/hybrid models do

not comply with any of these two wrappers, an ad hoc

wrapping of its tool may still be performed.

In the following section, we show the features of our

solution, through a proof of concept of a smart heating

M&S.

10 Use case

Our use case is inspired by different works around smart

heating.55,58 We want to simulate the evolution of the tem-

perature and the power consumption of two buildings

equipped with electric heaters. Using this simulation, we are

interested in the design of a controller for limiting the con-

sumption peaks duration in the building. To do so, this con-

troller temporarily disables some heaters according to the

information it receives on the building temperatures and
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power consumption. This controller interacts with the build-

ings system through an IP (Internet Protocol) telecommuni-

cation network. Such a goal could lead to a typical iterative

M&S process driven by the following series of questions.

1. What is total the power consumption and the tem-

perature evolution in the buildings, without a

controller?

2. Does the controller actually achieve its goal, with-

out considering delays and perturbations poten-

tially induced by the telecommunication network?

3. What is the impact of the telecommunication net-

work presence, on the controller performances?

This leads to three major steps in the M&S process.

In order to answer to the first question, we need to

simulate the thermic system. We use three models. One

describes the outside temperature evolution. The two oth-

ers describe the power consumption and temperature evo-

lution of each building, according to the outside

temperature evolution. We perform the co-simulation of

these three models by feeding the building models with

the outside temperature trajectory.

In order to answer the second question, we build the

model of the controller. We use this model twice (one for

each building) in the co-simulation. Each controller model

is fed with the outputs of its building model (i.e., room

temperatures and heater power consumption). When

needed, it produces the heaters switch off/on orders as out-

put, sent to the building model as inputs.

In order to answer the last question, we add a model of

the telecommunication network between the buildings and

their controller. Outputs of the buildings models now first

pass through the network model before arriving to the con-

troller models. Reciprocally, the controller orders transit

through the network model before delivery. The network

model adds delays and perturbations (i.e., packet loss and

noise) to the system.

This ‘‘toy’’ use case does not claim to be realistic. We

keep the atomic models of the use case simple since we are

here focused on demonstrating the following MECSYCO

properties, rather than on presenting a credible use case:

� Modularity: The use case development follows an

iterative M&S process. We first begin the co-

simulation with the thermic model of the building.

Then, we add step by step the models of the control-

ler and the telecommunication network. We show

that passing from one of these steps to another does

not require rebuilding the co-simulation from

scratch.
� Software interoperability management: Each

model of the co-simulation is implemented in a dif-

ferent simulation software. The thermic model is

defined in Modelica and exported into FMUs for

model exchange and co-simulation, the telecommu-

nication model is defined using the NS-3 simulator,

and the controller model is implemented in an ad

hoc way using the Java language. We show that

MECSYCO properly handles exchanges of data

between these heterogeneous software.
� Multi-formalism integration: The models of the

co-simulation are defined in different formalisms.

The thermic model is a hybrid model composed of

differential and discrete equations. The telecommu-

nication model is a discrete-event model whereas

the controller model is a discrete time-stepped

model. We show that MECSYCO enables the rig-

orous integration of these heterogeneous models.
� Multi-representation integration: The models

evolve at different temporal scales: seconds for the

controller and the thermic models, and nanoseconds

for the telecommunication network. We show that

MECSYCO rigorously synchronizes these model

executions during the co-simulation.
� Distributed multi-platform execution: We exe-

cute the co-simulation on two computers connected

on a local area network. These two computers use

different OSs, and different implementations of

MECSYCO. The telecommunication network

model is executed on GNU/Linux Debian with the

C++ version of MECSYCO, whereas the other

models are executed on Microsoft Windows 10

with the Java version of MECSYCO.

In order to make this use case reproducible and to

describe in a transparent way all its heterogeneity, we

detail all models and their implementation in the following

sections. Finally, in Section 10.4 we describe the different

co-simulations made with these models, we discuss the

simulation results, and we highlight the benefits offered

by MECSYCO.

10.1 Thermic system models

We create two kinds of models for the thermic system. The

first one corresponds to the outside temperature trajectory.

For sake of simplicity, this model generates a simple sinu-

soidal signal representing day/night temperature cycles.

The second one corresponds to the temperature and power

consumption evolutions of one building. As the two build-

ings are identical, we use this model twice.

Each building of the thermic system is composed of 10

rooms linked by a corridor (as shown in Figure 11). Each

room is influenced by the outdoor temperature, by the

adjacent rooms, and contains an electric heater with an

internal thermostat. This one turns on when the tempera-

ture inside the room falls under a minimal value and turns

off when this temperature reaches a maximum value. For

sake of simplicity, we assume here that all heaters have
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the same features (i.e., setpoint temperatures, powers and

tolerances).

We use OpenModelica to define these models. The fol-

lowing list presents the interface of the building model

used to interact with the other models of our use case.

Inputs:

� Here blackouti is a discrete Boolean input. When

set to true, the electric heater of the room i is shut

down.
� Here Tout is the continuous outside temperature

in K.

Outputs:

� Here RiTemp is a discrete variable sampling the

temperature of the room i. This signal is updated

every period of time, and represents the information

sent regularly by a thermometer to the controller.
� Here RiPow is the instantaneous power consump-

tion inside the room i. It is a discrete variable

updated each time the heater starts and stops.

The building model is a hybrid system which combines

continuous and discrete behavior. The simulation of this

model requires to solve the differential equations system

describing the temperatures evolution while taking account

of discrete time and state events. These discrete events cor-

respond to the Modelica ‘‘when’’ statements. Each update

of the discrete output ports RiTemp corresponds to a time

event scheduled in advance by the model, for regularly

sampling the continuous temperature evolution. On the

contrary, a state event occurs each time the temperature of

a room reaches one of the two heaters thresholds (i.e., each

time Ti = Twanted6 bandwidth
2

). Considering the 11 rooms of

the building, 22 state-event thresholds have then to be

simultaneously monitored. Moreover, the continuous

inputs of the outside temperature and the discrete inputs

corresponding to the blackout orders of the controller have

to be integrated during the simulation. More details about

this model can be found in Appendix A.

10.2 Controller model

The controller model is built in an ad hoc way in Java fol-

lowing the DEVS functions of our model artifacts. As the

two buildings do not interact together (i.e., no temperature

exchanges occur between the buildings), the controller can

manage each building separately. Then, we define here the

model of the controller for managing only one building.

This model can be duplicated in order to control both

buildings.

Recall that the goal of the controller is to limit power

consumption peaks duration in the building. To do so, the

controller temporary disables some heaters when the total

power consumption of the building is equal or higher than

a given threshold Powmax. Hence, we accept to lower the

temperatures of some rooms beneath the setpoint, for a

specific period of time. Nevertheless, in order to maintain

a minimum of comfort in every room, the controller makes

sure that the temperature is above a given threshold

Tempmin in K (assumed to be lower than the temperature

setpoint of the heaters).

The controller maintains a set of variables Tempi and

Powi for saving respectively the last temperature and the

last instantaneous power consumption values received

from the sensors of each room i of the building. This con-

troller is described by a discrete time-stepped model where

each time step corresponds to an evaluation point. Each

Powi and Tempi variable can be updated by specific input

ports of the model. The controller order to the heater of

each room i corresponds to a Boolean sent through a spe-

cific output port blackouti. From our DEVS wrapping per-

spective, we consider each time step as an internal event

and each input/output as an external event. More details

about this model can be found in Appendix B.

10.3 Telecommunication network model

The IP network is modeled with NS-3,6 a popular discrete-

event IP network simulator. NS-3 models can be wrapped

into DEVS, as a coupled model composed of network com-

ponents.37 From the perspective of the IP network, each

room corresponds to two network devices. A heater sends

information about its power consumption to the controller,

and receives commands from the latter, asking them to stop

heating for a while. A thermometer regularly sends the cur-

rent temperature of the room, to the controller too. More

details about this model are found in Appendix C.

10.4 Co-simulations and results

This section details the co-simulations and their results.

The parameters used in the different co-simulations are

provided in Table 3.

In order to answer to the first question, we export the

thermic building model into an FMU-ME, to handle dis-

crete events. As said previously, we use two instances of

this model, one for each building we want to simulate. We

export the outside temperature model as an FMU-CS

called Out.

Figure 11. Architecture of the building.
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According to our wrapping strategy, each building

FMU is associated with an instance of our QSS solver.

Each of these QSS solves the 11 differential equations of

its models and monitors its 22 state-event thresholds. We

set the quantization of all the integrators of the solvers to

0:0001. As shown in Figure 12(b), we interconnected the

wrapped models in MECSYCO in order to form the DEVS

coupled model of Figure 12(a).

The co-simulation results are shown in Figure 13(a).

For the sake of concision, these results only show the state

trajectory of the first building. These results are similar to

the ones obtained with OpenModelica, and perfectly match

the expectation: state events are handled at the right times

(i.e., heaters start and stop just when the temperatures evo-

lution reaches one of the two thresholds), and we can see

the influences of the building symmetry with room 1 to 10

in the state trajectory (e.g., the rooms 1 and 10, or the

rooms 5 and 6, which receive similar thermal influences,

have similar trajectories).

In order to answer the second question, we add the two

controller models (one for each building) to the co-simula-

tion. According to the co-simulation parameters, the con-

troller considers that consumption peaks occurs when the

total power consumption of the building is higher than the

power consumption of one active heater (i.e., when at least

two heaters are active at the same time). We configure the

models in order to have the controller evaluating the build-

ing states every minute. 30 s after each evaluation point

(and its potential orders sent to the heaters), the controllers

receive new information from the building sensors, and

wait another 30 s until the next evaluation point. We

connect the wrapped model in order to form the coupled

model of Figure 14(a).

Figure 13(b) shows the simulation results for the first

building. In this graph, grey areas represent periods of

time during which the heaters should be shut down accord-

ing to the controller model outputs. Again, the simulation

results are in accordance with the expected model beha-

viors. Indeed, we can see that the controller model outputs

are well integrated into the building model: when the con-

troller sends the shutdown orders, the heaters immediately

stop working, and the corresponding room temperatures

start decreasing according to the wall heat transfers. On

the contrary, as soon as the controller sends starting orders

to the heaters, the corresponding temperatures immedi-

ately start increasing and oscillate as expected between the

two state-event thresholds.

In order to answer the last question, we add the telecom-

munication model to the co-simulation, as indicated in Figure

15. As NS-3 works at a nanosecond timescale whereas the

FMUs use a second time scale, we use transformation opera-

tions in the coupling artifacts between NS-3 and the FMUs

(converting the timestamps of the exchanged events).

It is important to note that the models are compliant

with different OSs: the FMU components we have gener-

ated are only compliant with Microsoft Windows, whereas

the NS-3 model works on GNU/Linux. Moreover, we used

different implementations of MECSYCO to wrap our mod-

els: the FMU components and the controller model are

wrapped using the Java version whereas the NS-3 model is

wrapped using the C++ version. As a consequence, we

have to distribute the co-simulation on two computers.

Table 3. Parameters used in the smart heating co-simulation use case.

Models Parameters descriptions Values

Thermic building Temperature setpoints of the heaters, Twanted 293.15 K
Tolerance of the heaters, bandwidth 5 K
Electrical resistance of the heaters, R 2 �
Power supply voltage, U 230 V
Thermal capacities of rooms 1 to 10 112.5 kJ/K
Thermal capacities of rooms 11 600 kJ/K
Thermal conductance of the outside walls of rooms 1 and 10 2 J/K
Thermal conductance of the outside walls of rooms 2 to 9 1.25 J/K
Thermal conductance of the outside wall of room 11 7.5 J/K
Thermal conductance of the inside walls between rooms 1 to 10 3.75 J/K
Thermal conductance of the inside walls between rooms 11 and room 1 to 10 2.25 J/K
Rooms initial temperature (NB: identical for all the rooms) 293.15 K
Temperature evolution sampling period 60 s

Outside temperature evolution Amplitude 5K
Offset 278.15 K
Period 1 day
Phase �π=2

Controller Consumption peaks occurrence threshold, Powmax 735 W
Minimum temperature threshold, Tempmin 288.15 K
Evaluation points period (i.e., model time step) 60 s
Initial evaluation point time (i.e., evaluation points offset) 30 s
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� The first one runs on Windows 10 and uses the Java

version of MECSYCO to simulate the FMUs and

the controller model.
� The second one runs on GNU/Linux Debian and

uses the C++ version of MECSYCO to simulate the

NS-3 model.

When we configure NS-3 for simulating a TCP

(Transmission Control Protocol) protocol on the network

without any error model, the simulation results are similar to

the previous ones (shown in Figure 13(b) where for example

the network does not impact the system behavior). This is

because, in this case, the network only introduces very small

delays (on a second time scale) in the communications

between the buildings and the controller. However, when

we configure NS-3 with perturbations introduced in the

simulated communications (i.e., packets losses or corrup-

tions), the simulation results change as shown in Figure

13(c) and (d). Perturbations are introduced by using in NS-3

a UDP (User Datagram Protocol) protocol without check-

sums and an error model of one bit altered respectively

every 10,000 ones, then every 1000 ones. We can see that,

as one can expect, the more noise we add in the network,

the more different the system trajectory becomes. It is inter-

esting to note that in the results shown by Figure 13(d), the

noise is so high that some controllers orders (for instance

the shutdown order for the heater of room 1 at time 8370)

do not even reach the building. Note that Figure 13(c) and

(d) only display an example of simulation results, as the NS-

3 error model introduces a stochastic process.

10.5 Synthesis

With this use case, we have shown that MECSYCO can

rigorously integrate different kinds of heterogeneity. At

each step of this use case, we introduced a new heteroge-

neity at the software, formalism and representation levels.

� The first step shows that MECSYCO handles the

FMI standard (both co-simulation and model

exchange), and hybrid dynamics (i.e., continuous

evolution with state and time events).
� The second step shows that MECSYCO enables the

interaction of continuous and time-stepped models,

and properly manages the data exchanges between

FMUs and ad hoc simulators.
� The last step shows that the NS-3 discrete-event

simulator can rigorously interact with FMUs and

ad hoc models in a distributed multi-platform archi-

tecture within MECSYCO.

Through this iterative proof of concept, we have shown

that MECSYCO enables the modular M&S of a CPS.

Indeed, it is important to note that, at each next co-

simulation step, we only add and connect the new models

to the previous co-simulation. Hence, we do not have to

modify neither the models nor their MECSYCO wrappers:

we only have to change the co-simulation structure (i.e.,

model interconnections and co-simulation distribution).

11 Conclusion

In this work, we gave the specifications of the MECSYCO

middleware. MECSYCO tackles the numerous and diffi-

cult challenges of the CPS co-simulation. For this purpose,

it relies on a DEVS wrapping strategy. The middleware

performs the co-simulation in a parallel, decentralized and

distributable fashion thanks to its modular multi-agent soft-

ware architecture.

(a) Bloc diagram view of the DEVS model. (b) MECSYCO view of the co-simulation.

Figure 12. Co-simulation of the building system without controller.
DEVS: discrete-event system specification; MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation.
The co-simulation is executed on a single computer using Windows 10 and the Java implementation of MECSYCO. We simulate one
day of the system evolution.
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(a) Simulation results without a controller. (b) Simulation results with a controller but no network. 

Figure 13. MECSYCO co-simulation results of the building-controller system.
MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation; UDP: User Datagram Protocol.
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In this article, we illustrated how the DEVS literature

and tools (namely the DEV&DESS hybrid formalism and

the QSS solver strategy) can be used to rigorously integrate

pre-existing equation-based tools into the MECSYCO dis-

crete environment to perform hybrid co-simulations. In

order to make this integration the more generic possible at

the software level, we defined DEVS wrappers for the FMI

standard. As a consequence, this DEVS wrapping of the

FMI standard is reproducible in any DEVS-based

platform.

We developed a proof of concept of a smart heating

use case, where we integrate and co-simulate non-DEVS-

centric M&S tools, namely OpenModelica and NS-3. We

showed that our middleware is modular; there is no need

to change the middleware specifications when a model is

changed/added/removed in the co-simulation. Moreover,

our middleware is fully specified from the concepts, till

their implementation, making different implementations of

MECSYCO interoperable.

Our approach is grounded on choices at different levels

with the resulting properties and limitations:

Using DEVS enables MECSYCO extensions based on

DEVS literature. For example, dynamic structure and

other synchronization algorithm (e.g., optimistic) could be

implemented. The DEVS wrapping strategy offers two

advantages: (a) pre-existing legacy M&S tools and their

models can be re-used; and (b) we benefit from all the

integrative works around DEVS in order to rigorously

integrate tools using different formalisms. However,

MECSYCO also inherits some of DEVS limitations: if a

formalism or a solver cannot be mapped (directly or indir-

ectly) into DEVS, it cannot be integrated in MECSYCO.

On a more specific level, by relying on sequential DEVS

instead of parallel DEVS, we ease the wrapper’s design

but we may not take account of simultaneous events in a

reproducible way.

Using a parallel conservative co-simulation algorithm

simplifies the integration of tools because of limiting

assumptions (e.g., the rollback features is not mandatory)

but it forbids to take advantage of optimistic or sequential

ones.

Using the FMI standard to integrate continuous systems,

enables us to have a more generic software compatibility;

we can use all the tools compatible with FMI. However,

FMI is still not natively supported by all the equation-

based tools (e.g., PowerFactory). As a consequence, ad hoc

wrappers must be developed for these tools. We proposed

two complementary kinds of wrappers for FMI:

� In the case of FMI-ME, we have to code the solver

in the wrapper. Thus, with this strategy, we cannot

reuse already implemented solvers. However, the

advantage is that we can integrate and simulate

hybrid models (e.g., with continuous AND discrete

behaviors). In our case, we used QSS solver of

order 1 or 2 to simulate the model. As we only pro-

vide a QSS2 solver we are limited to a simple non-

stiff equation system even if other QSS solvers can

be implemented in the platform. This approach

may also be inefficient for a large ODE system

because FMI prevents us from fully exploiting the

QSS method.
� In the case of FMI-CS, we have to use the solver

embedded in the FMU. This means that, when

exporting a model as an FMU from a continuous

tool, any solver which is compliant with the

Figure 14. Co-simulation of the building system with a controller but no network.
DEVS: Discrete EVent System specification; MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation.
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standard and our assumptions can be chosen. Thus,

we are only limited by the integrative power of

FMI and our assumptions. Nonetheless, the discrete

behavior has to be rewritten in the wrapper. Also,

note that we are limited to FMU 2.0 which provides

a rollback capacity and must always accept the

desired integration step.

In future works, we plan to propose extensions of our

approach in order to have MECSYCO supporting the

whole M&S process, from the definition of the experimen-

tal plan to the simulation results analysis. This includes

the verification of the wrappers to guarantee the correct-

ness of tools integration in the platform. We also plan to

enhance the capacity of MECSYCO by implementing

other DEVS co-simulation algorithms (e.g., optimistic or

centralized). Finally, we would like to develop a domain-

specific language approach within MECSYCO, to define

co-simulations directly using the language of experts.

Such an approach could indeed make MECSYCO accessi-

ble outside the M&S experts circle.

Appendices

13 Thermic system model details

In order to describe our thermic system, we need to build

models for rooms to get the temperature, for walls to get

the heat flow between two rooms (or between a room and

the outside temperature) and for electric heaters to get the

instantaneous power consumed to heat.

We use the standard library of Modelica to build our

models. The thermal part of the building is built using the

Modelica.Thermal.HeatTransfer library and the

electric heater model is built with the Modelica.
Electrical.Analog library.

Rooms are modeled as heat capacitors. Each room is

seen as a volume of air with a temperature. The different

influences (from the walls and from its heater) are mod-

eled as heat flow exchanges. The behavior of the model of

a room i is characterized by the equation:

Ci �
dTi

dt
=Qini

+Qheateri

Where:

� Ci is the constant thermal capacity of the room in J/

K.
� Ti is the temperature of the room in K.
� Qini

is the sum of the heat flows received from the

walls connected to the room.
� Qheateri

is the heat flow received from the electric

heater. We consider here that it is equal to the

instantaneous power consumption of the room in

W –i.e., RiPow=Qheateri
.

The heat flows are computed in the following way. The

model of the wall determines the heat flows between the

two air volumes k and l it is connected with. Note that in

our case, an air volume can be a room or the outside envi-

ronment. The heat flows depends on the temperatures of k

and l as well as on the thermal conductance of the wall.

This is represented by the following equations:

Qkl =Gi � (Tk � Tl)
Qlk = � Qkl

(a) (b)

Figure 15. Co-simulation of the building system with a controller and a network.
DEVS: discrete-event system specification; MECSYCO: Multi-agent Environment for Complex-SYstem CO-simulation.

Camus et al. 1123



Where:

� Gkl is the constant thermal conductance of the wall

in J/K.
� Qkl (resp. Qlk) is the heat flow from the volume k

(resp. l) to the volume l (resp. k) in J.

Here Qheateri
is determined by the behavior of the elec-

tric heater which is modeled as a basic electrical circuit

with a constant voltage, an electrical resistance and a

switch. This is represented by the following equation:

if orderi and not blackouti
then Qheateri

= U2

R

else Qheateri
= 0

Where:

� U is the constant voltage in V.
� R in O is the constant electrical resistance of each

heater in the building.
� orderi is a boolean representing the command of

the internal controller of the heater. When it is

equals to true, the heater is on.

orderi is set to true when the temperature inside the

room is below a minimal value, and to false when this

temperature reaches a maximal value. This behavior corre-

sponds to the conditional statement:

when Ti 4 Twanted � bandwidth
2

then orderi = true

else when Ti 5 Twanted +
bandwidth

2

then orderi = false

Where:

� Twanted is the desired temperature in every room of

the building.
� bandwidthi is the temperature tolerance of every

heater in the building.

Each discrete port RiTemp samples the continuous tem-

perature evolution of the room i according to the following

Modelica code:

when sample(0, period) then
RiTemp = Ti

end when;

Where period is a constant interval of time in s. The

Modelica function sample(0, period) is used to update

RiTemp each period of time in order to represent the dis-

crete signal regularly sent by the thermometers to the

controller.

The model of a room with its heater and controller can

be described in bloc diagram by Figure 16. Using this

model, the whole building can be described by the bloc

diagram of Figure 17. According to OpenModelica, this

model is composed of 1622 equations including 11 differ-

ential equations.

14 Controller model details

The controller maintains a set of variables Tempi and Powi

for saving respectively the last temperature and the last

instantaneous power consumption values received from

the sensors of each room i of the building. Basing on these

variables, the controller regularly evaluates at a given fre-

quency if some heaters need to be disabled or enabled. If

so, it sends the corresponding orders to the heaters.

The policy used to determine these orders at each eva-

luation point is the following;

1. The controller checks for each room i if

Tempi 4 Tempmin. If so, the controller immediately

enables the corresponding heaters.

2. In order to check if some heaters have to be shut

down, the controller computes the building total

instantaneous power consumption Powtot accord-

ing to the following equation:

Powtot =
X11
i= 1

Powi

 !
+

U 2

R
� Non

With:

� Non the number of heaters that have just been

enabled by the controller in step 1.
� U the constant voltage of the heaters in V.

Figure 16. Heated room model ‘‘Ri’’.
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� R the constant electrical resistance of the heaters

in O.

If Powtot 5Powmax, then the controller computes the num-

ber Noff 2 N of heaters which have to be shut down in order

to lower Powtot below Powmax. The controller disables then

the heaters of the Noff rooms having the highest temperatures.

Noff is computed according to the following equation:

Noff =int
Powtot � Powmax

U 2=R

� �
+ 1

With int : R! N the integer typecasting function which

truncates a decimal number to zero digits.

15 Network Model Details

The IP network topology is shown on Figure 18 (with only

three rooms a building instead of eleven). We consider

that there is one switch (S) a building, connecting all hea-

ters and thermometers in a same local area network. Then,

each building is connected to the Internet with its own rou-

ter (R). The Internet is just modeled with one big central

router, and the controller is itself connected to it. Network

devices are connected to external models through input

and output ports (marked on the sides of the figure), for

receiving and transmitting data. In this case, external mod-

els correspond to the application layer of the devices.

Heaters and thermometers can exchange measures and

commands with the controller over the fake Internet,

thanks to TCP or UDP connections, depending on the

choice of the experimenter. Choosing TCP (reliable proto-

col) or UDP (unreliable protocol) is important due to the

error model installed on the links between the building

routers and the Internet, used for modeling some noise on

the network. Experimenters can configure this error model,

choosing a bit error rate (e.g., one incorrect bit for every

thousand bits sent). The network model is build using the

standard NS-3 component library.
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