Co-Simulation of IP Network Models in the Cyber-Physical Systems Context, using a DEVS-based Platform

Julien Vaubourg, Vincent Chevrier Laurent Ciarletta, Benjamin Camus

SpringSim'16 Pasadena Communications and Networking Symposium April 4^{th} . 2016

Cyber-Physical Systems (CPS)

- Communication (IP) networks, with various technologies (Ethernet, PLC, GPRS, etc.)
- 2. Everyday **physical devices** connected to information systems, through these IP networks (heatings, fridges, etc.)
- Connected devices providing input and output ports (remote control commands, monitoring data, etc.)

Issues

We are interested in **CPS simulation**, but:

- 1. No big CPS simulator able to model:
 - □ IP networks with all existing technologies
 - □ whole diversity of existing everyday devices
 - all kinds of information systems
- 2. Rewriting all models available for different simulators is **too long**, **too expensive and requires too many different skills**

Challenges

1. Modeling CPS **using already existing models**, currently available for different incompatible simulators

2. Connecting these models together in a same a **multi-model**, integrating **all different forms of heterogeneity**

Solution

Co-simulation is the retained solution:

 Every required simulators are executed independently, with communications between each other (time synchronization, data exchanges)

■ The MECSYCO co-simulation platform was chosen

MECSYCO

- Co-simulation platform based on the DEVS formalism [Ziegler et al., 2000] and theoretically able to integrate all other formalisms
- Simulators executing models are connected to DEVS wrappers
- Integrating a new simulator into MECSYCO means creating a new DEVS wrapper
- Time synchronization is ensured using CMB algorithm [Chandy et al., 1979] (fully decentralized execution)

MECSYCO

MECSYCO enables us to meet our heterogeneity challenges

MECSYCO

MECSYCO enables us to **meet our heterogeneity challenges** but does **not provide DEVS wrappers for IP simulators**

Contributions

DEVS wrapping IP simulators in order to use them in a DEVS co-simulation, requires to be able to:

- 1. Describe an IP topology (+ apps) with a multi-model, equivalent to the same description using only one model
 - ⇒ add DEVS ports to models
- 2. **Control the execution** (event processing) of an IP model during the simulation, with external event exchanges
 - ⇒ add **DEVS Simulation Protocol** functions to simulators

- IP Network Model: model composed of submodels representing nodes, applications, links, etc.
- End-Node: node with applications, producing and receiving data (e.g. client, server)
- Transit-Node: node without application, forwarding data from and to other nodes (e.g. router, switch)

- Application submodels (data processing) offered by IP simulators are restricted
- Exporting of the application submodels for using external specialized models (e.g. information system models)
- 3 models with 3 simulators are now used

- Reusing of the empty nodes for creating Structural Port Devices
- Structural Port Device: application installed on an End-Node, for catching internal application layer data and injecting external application layer data

- Port Devices can be used as **DEVS Ports** for creating Structural Couplings between the IP model and others
- Structural Coupling: interconnection between an IP model (representing the network layer) and another model (representing the application layer)

- No IP simulator offers submodels for all existing IP technologies
- Splitting the IP model into 2 separate models for being able to use 2 different simulators

- Using of the network device submodels for creating Spatial Port Devices
- Spatial Port Device: modeled device (e.g. network device) used for catching internal IP packets and for injecting external IP packets

- New Port Devices can be used as **DEVS Ports** for creating Spatial Couplings between the IP models
- Spatial Coupling: interconnection between two IP models, each one representing a part of an IP network

- New Port Devices can be used as **DEVS Ports** for creating Spatial Couplings between the IP models
- Spatial Coupling: interconnection between two IP models, each one representing a part of an IP network
 - ⇒ We are now able to describe an IP topology with apps, using a multi-model

IP simulators generally work with an internal event stack

- Internal event loop has to be controlled (RUN vs. PAUSED)
- Port Devices have to work with dedicated external event stacks

1/4 **Getting next internal event time**: consulting the event stack

2/4 Processing an internal event: executing the main event loop

3/4 **Getting an output event:** using Port Devices event stacks

4/4 **Processing an external event:** filling and executing Port Devices event stacks

- 4/4 **Processing an external event:** filling and executing Port Devices event stacks
 - ⇒ We are now able to **integrate IP models and simulators** to DEVS co-simulations

Proof Of Concept

- All proposed concepts (and others presented in the paper)
 have been implemented for NS-3 and OMNeT++/INET
- DEVS wrappers for NS-3 and OMNeT++/INET have been added to the MECSYCO library
- Core source-code of NS-3 and OMNeT++/INET was not changed (regular software implementations are still usable)

Proof Of Concept

Same simulation results, with or without Spatial Couplings.

⇒ Multi-model versions are equivalent to single-model ones

Example

Example: Smart-Heating to model and simulate

Example

Corresponding multi-model

Example

IP model with structural and spatial couplings

 IP networks models can be integrated into a DEVS co-simulation

- IP networks models can be integrated into a DEVS co-simulation
- IP models can be connected to any other models already integrated to MECSYCO

- IP networks models can be integrated into a DEVS co-simulation
- IP models can be connected to any other models already integrated to MECSYCO
- Plug-n-play simulator replacements in MECSYCO enables to compare models performance/accuracy

- IP networks models can be integrated into a DEVS co-simulation
- IP models can be connected to any other models already integrated to MECSYCO
- Plug-n-play simulator replacements in MECSYCO enables to compare models performance/accuracy
- IP topologies can be modeled mixing IP models provided by different IP simulators

- IP networks models can be integrated into a DEVS co-simulation
- IP models can be connected to any other models already integrated to MECSYCO
- Plug-n-play simulator replacements in MECSYCO enables to compare models performance/accuracy
- IP topologies can be modeled mixing IP models provided by different IP simulators
- Can be used for parallelizing an existing sequential IP simulator

- IP networks models can be integrated into a DEVS co-simulation
- IP models can be connected to any other models already integrated to MECSYCO
- Plug-n-play simulator replacements in MECSYCO enables to compare models performance/accuracy
- IP topologies can be modeled mixing IP models provided by different IP simulators
- Can be used for parallelizing an existing sequential IP simulator
- Used by the main French electric utility company (EDF R&D)

Limitations

Assumptions on the IP simulators:

- Dynamics is based on an event stack
- Models meet the published standards for network protocols
- Nodes and links are independently modeled
- IP packet is the atomic unit of data that is simulated

[Riley et al., 2004] proposes some solutions for spatially coupling IP models that use incompatible implementation of a same protocol

Perspectives

1. Integrating **more IP simulators** in order to be able to propose the most possible generic concepts

Creating a model-driven environment for creating IP multi-models using several IP model libraries, with MECSYCO

Questions?