
Co-Simulation of IP Network Models in the Cyber-Physical
Systems Context, using a DEVS-based Platform
Julien Vaubourg

Inria, Université de Lorraine,
CNRS, LORIA, UMR 7503

Vandœuvre-lès-Nancy,
F-54506, France

julien.vaubourg@inria.fr

Vincent Chevrier
Université de Lorraine, CNRS,

Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France
vincent.chevrier@loria.fr

Laurent Ciarletta
Université de Lorraine, CNRS,

Inria, LORIA, UMR 7503
Vandœuvre-lès-Nancy,

F-54506, France
laurent.ciarletta@loria.fr

ABSTRACT
Cyber-Physical Systems (smart grids, cities, homes, etc.) are
composed of computing resources, actuators and sensors,
connected through IP networks. These IP networks involve
many technologies. In order to help designing and evaluating
these systems, we are studying the modeling and simulation
of IP networks in this context. Since there is no universal IP
simulator proposing a model library corresponding to all the
required technologies, we propose a solution to make differ-
ent major IP simulators, generally not interoperable, interact
with one another in a same co-simulation. Moreover, they
should also interact with simulators corresponding to other
fields of expertise involved in the simulation, mostly related
to the physical or social aspects of these systems (e.g. power
models, traffic models, weather models, etc.). In this paper,
we propose to address these issues as a multi-modeling prob-
lem, by integrating well-known IP network simulators into a
DEVS-based co-simulation platform. We propose some con-
cepts, helping to split a network topology into several models,
to create input/output ports inside them, and to integrate them
to a DEVS multi-model. We illustrate our solution thanks to
a use case, including interconnected event-based models ex-
ecuted both by NS-3 and OMNeT++, equation-based models
and the co-simulation platform MECSYCO.

Author Keywords
Co-Simulation, CPS, MECSYCO, NS-3, OMNeT++

ACM Classification Keywords
C.2.0 Computer Communication Networks: General; I.6.m
Simulation and modeling: Miscellaneous

1. INTRODUCTION
We are interested by the simulation of Cyber-Physical Sys-
tems (CPS), which have the specificity to mix models for
communication networks and others areas of expertise, like
power models, traffic models, weather models, etc.

Communication networks are almost entirely IP-based and
include several different physical media and logical protocols.
Many models for these technologies are provided by several

SpringSim-CNS 2016 April 3-6 Pasadena, CA, USA
c©2016 Society for Modeling & Simulation International (SCS)

off-the-shelf IP network simulators (IP simulators), but the
implementation of all of the required models are not neces-
sarily available for the same simulator, or available with the
same accuracy. As a result, through their own models library,
different IP simulators can be complementary for modeling
a network. We want to reuse existing models from differ-
ent libraries, by modelling IP networks using a multi-model
(each model representing a part of the network), and execut-
ing it with a co-simulation (involving different simulators,
generally not interoperable). To achieve this goal, we have
to propose solutions for some underlying issues, like splitting
a network topology into several models, defining input/output
ports inside existing models, etc.

Moreover, the IP network models (IP models) have to inter-
act with the other models corresponding to other fields of
expertise involved in the CPS simulations. Therefore, the
multi-model must also be able to integrate these heteroge-
neous models, dealing with different formalisms (e.g. event-
based vs. equation-based) and the co-simulation must be able
to integrate the corresponding simulators. This paper presents
our solution, using a DEVS-based co-simulation platform.

The section 2 presents the common usages related to co-
simulation with IP simulators and positions the goals and
challenges of this paper. Section 3 introduces the concepts
we defined for creating couplings between IP models (Spa-
tial Couplings), then Section 4 introduces those defined for
the couplings between IP models and others (Structural Cou-
plings). Section 5 focuses on the multi-model creation & exe-
cution, thanks to DEVS and MECSYCO. Section 6 proposes
some proofs of concept for validating our results. Finally,
Section 7 illustrates with a use case corresponding to the sim-
ulation of a CPS, including equation-based models and an IP
network modeled through several IP models libraries.

2. GOALS AND CHALLENGES RELATED TO CO-SIMU-
LATIONS WITH IP SIMULATORS

We found two types of coupling with an IP model, in the lit-
erature: coupling with another IP model, and coupling with a
model from a different field of expertise (non-IP model).

2.1. Couplings Between IP Models
Couplings between IP models are mainly used to distribute
the execution of an IP model. Distributing an execution im-
plies splitting an existing model designed for a specific sim-



ulator, into several models, for executing them over several
instances of the same simulator. This is mainly done for
performance reasons (speed of scalability). One of the main
contribution [14] about this approach is the integration of the
Message Passing Interface (MPI) standard for the IP simula-
tor NS-3. MPI allows a modeler to create a complex model
of the IP network and to define where the software environ-
ment is allowed to divide the execution into several parts, us-
ing separated simulator instances. Another work was done
before with the distribution of NS-2, with PDNS [5] made
by the PADS research group at Georgia Tech. This project
is interesting, because the authors paid attention to minimize
the number of modifications required into the NS-2 source
code, enabling to reuse existing NS-2 simulations with their
patched version.

With these works, the co-simulation is composed of several
instances of the same simulator. In this paper, we are in-
teresting in the coupling of different IP simulators together,
for mixing different IP models libraries. Indeed, choosing an
IP simulator for writing an IP model means to be restricted
to the submodels (see Def. 1) available in its own models
library. Usually, the IP simulators are not interoperable to-
gether. Consequently, the modeler cannot use submodels
from different models libraries. Our goal is to split the net-
work topology into several parts, and implement each part
using a different IP simulator, for being able to use several IP
models libraries. We named this type of coupling a Spatial
Coupling, as defined in Def. 2.

DEFINITION 1. A submodel is a model provided by an IP
simulator, thanks to its models library. Submodels can be
connected together, enabling to model a complete network.
They can be models for nodes, links, applications, etc.

DEFINITION 2. A Spatial Coupling corresponds to a cou-
pling between two IP models, each one representing a part of
a same network topology. A Spatial Coupling is linked to each
model thanks to input/output ports. It is in charge to ensure
the IP packets exchanges between the two ports.

The most important work in this field is [18], with the cou-
pling of GTNetS [17] and PDNS using an homemade co-
simulation platform. It introduces two methods for doing
couplings: cross-protocol and split-protocol stack methods.
The first one corresponds to a topology split at the level of
an equipment (e.g. a node or a link), whereas the second one
corresponds to a topology split at a TCP/IP layer level (e.g.
data link, transport, etc.). In our case, we restrict the Spa-
tial Couplings to what they named the cross-protocol stack
method (considering the split-protocol stack method as a fu-
ture research topic). However, as in this work, we focus on
packet-level simulators that assume the packet is the atomic
unit of data that is simulated.

In the context of CPS simulations, supporting couplings with
non-IP models is also required. This is the topic of the next
section.

2.2. Couplings Between IP Models and Non-IP Models
Couplings between IP models and models from other fields
of expertise enable to represent a device inside a network and

to use an external model for representing its application layer.
For example, when an electric power meter is coupled with an
IP network, the meter can be modeled both in the power net-
works domain (e.g. with an ordinary equation-based model)
and in the IP networks domain. In this case, the data received
by the IP simulator from a coupled simulator has to be em-
bedded in a message, that will then be sent from a source to a
destination in the modeled network topology.

Most works using this type of coupling are concerned by the
smart grid issues. [11] offers a good synthesis of platforms
combining power simulators with IP simulators. These plat-
forms are often restricted to only one IP simulator and/or only
one power simulator. One exception is [8] who is not specific
to particular simulators, but offers a solution strictly special-
ized in large-scale peer-to-peer systems simulations. In our
case, we want to find a solution not restricted to specific sim-
ulators or specific research fields, and couple IP simulators to
any other models using different formalisms. We named this
type of coupling a Structural Coupling, as defined in Def. 3.

DEFINITION 3. A Structural Coupling corresponds to a
coupling between an IP model, and a model α from a differ-
ent field of expertise. With this type of coupling, α represents
the application layer of a device, and is in charge to produce
output data from input data. The device represented in α

is represented in the IP model as a network device. The IP
model has to be able to receive data from α and send it to an-
other network device in the network. When data are received
by the network device corresponding to α , it has to transmit
them to the connected model.

The next section deals with the time synchronization issues.

2.3. Time Synchronization
Lots of papers focus on the method to use for the simulators
coordination. Furthermore, in the CPS context, the coordina-
tion method has to take into account the execution policies of
the different simulators, using different formalisms.

This issue was solved in EPOCHS [10] thanks to regular syn-
chronization points, checking the state of the continuous com-
ponents (power models) and checking if new events happened
for the discret-event ones (IP models). Depending on the step
size used for the continuous models, the simulation results
will be more or less accurate. Other works (e.g. [13] and
[12]) proposed algorithms close to the one used by EPOCHS,
but improving accuracy or execution times.

Many works focus on the use of HLA [4][7][9], and chose to
conform their federates (simulators) to the HLA rules, using a
RTI (simulation middleware) as a glue. HLA gives specifica-
tions describing how an RTI should working but not for how
it should be implemented. The result is that available RTI
implementations are often not compliant with the full HLA
standard. The simulators having an HLA connector available
are usually interoperable with a specific implementation of
the standard. Finally, because there are many ways, with the
shared objects, to do couplings between models with HLA,
it is very difficult to couple models not designed to commu-
nicate together. More generally, HLA does not give answers
for integrating models for different formalisms [19].



Details of our solution for the time synchronization are out of
the scope of the paper. We solved this problem thanks to the
co-simulation platform we chose to use and we contributed
to. Some pointers are given in Section 5.

The next sections present the concepts we defined, for creat-
ing Spatial and Structural Couplings.

3. SPATIAL COUPLINGS

3.1. Splitting a Network Topology
Splitting a network topology in order to represent different
parts of it in different models requires to choose a place where
to cut. We describe these places in this section, and propose a
concept for representing input/output ports inside the models.

An example of basic IP model, composed of submodels, is
proposed in Figure 1. Two categories of submodels are pre-
sented here: nodes and links. Each of these submodels are
composed of other submodels. In this paper, we chose to ig-
nore the underlying submodels, except for the network de-
vices composing a link, and the applications composing a
node. We defined two places where we can split a network
topology: End-Nodes (see Def. 4) and Transit-Nodes (see
Def. 5). A node can be both an End-Node and a Transit-Node,
e.g. a router acting as a proxy.

Figure 1. An IP model is composed of different submodels (in this
example, 1 color = 1 submodel), with End-Nodes, Transit-Nodes
and Links.

DEFINITION 4. An End-Node is a node with applications.
Incoming IP packets are intended for it, and outcoming pack-
ets are produced by it. It corresponds to the computer of an
end user, or a server.

DEFINITION 5. A Transit-Node is a node without appli-
cation. It is connected to several links, and its function is
to forward IP packets from a link to another one. It has no
packets directly intented for it. It corresponds to a router.

As described in Figure 2, splitting a simple network topology
involves 3 places where to cut, leading to 7 combinations.

Figure 2. Splitting a network topology with a basic example and 7
possibilies (a, ab, ac, abc, b, bc or c).

Connecting the models together enables us to create a multi-
model, representing the whole network topology. We con-
sider that the data unit transferred between the models is
the IP packet (corresponding to the layer 3 described in

RFC1122). Thus, models have to exchange modeled IP pack-
ets (IP packets) together.

Connecting the models together requires to create bridges be-
tween them. When an IP packet reaches a splitting boundary
inside a model, it has to cross the bridge for being trans-
ferred to the corresponding splitting boundary of the con-
nected model. According to Def. 6, these boundaries are what
we named Spatial Port Devices. According to Def. 2, bridges
between two IP models are Spatial Couplings.

DEFINITION 6. A Spatial Port Device corresponds to a
modeled device (e.g. a network device), used for catching in-
coming IP packets and for injecting IP packets in the modeled
network. They define the place in the network topology where
the IP packets have to leave the current model, in order to
be injected in another Spatial Port Device, defined in a con-
nected model. These are also the place where the external IP
packets sent by a connected model have to be injected in the
network. During a simulation, a Spatial Port Device always
exchange IP packets, in the two ways, with the same remote
Spatial Port Device.

3.2. Splitting on a Transit-Node
Splitting on a Transit-Node leads to a typical method for cut-
ting the model.

We use the basic network topology presented in Figure 2 as an
example, considering that we want to split the topology into
two parts. The cut occurs at the b line, on the Transit-Node. In
this case, we have to represent the T node into two models X
and Y . As described in Figure 3, we turn the network device
submodels of the two links on both sides of T , into Spatial
Port Devices. The T node is represented in the two models,
but with only one link attached to it.

Figure 3. Splitting on a Transit-Node.

In this case, E1 knows that all packets for E2 have to be send
via T , thanks to its routing table. When E1 sends an IP packet
to E2, this one is caught by the Spatial Port Device attached
to T in X . Then, it is transferred to the Spatial Port Device
attached to T in Y . Finally, it is injected in the network using
the routing table of T , for reaching E2.

We supposed that we used static routing for this example.
Once we split the network into several models, no model has
a global knowledge of the whole topology. Consequently, it
is impossible to let the IP simulators automatically fill the
routing tables. This can be laborious when we want to model
big and complex networks. Solutions for this problem are out
of the scope of this paper, but [18] provides some strategies
usable with our Spatial Couplings (e.g. using Ghost Nodes,
static routes, well-known routing protocols like BGP, etc.).



3.3. Splitting on a End-Node
Splitting on an End-Node leads to another typical method for
cutting the model. With this type of splitting, we will see that
some additional concepts are required.

We use again the basic network topology presented in Fig-
ure 2 as an example, considering that we want to split the
topology into two parts. The cut now occurs at the a line, on
the End-Node E1. We would like to have E1 represented in a
model X , and the other parts in a model Y .

In this case, the network topology represented in Y will be
inconsistent, because of the link attached to T on a side, but
to nothing on the other side. In fact, the part II of the topology
cannot be represented without a node replacing E1. For this
purpose, we have to add a Fake Node to the model Y . We
defined this concept in Def.7.

DEFINITION 7. A Fake Node is a node added to a model
for replacing a missing End-Node on a link, owing to a Spa-
tial Coupling. It is just used for attaching the link and hosting
a Spatial Port Device. It should not have any application and
act as an empty shell. This node must have no influence on
the simulation results.

Based on our experience, creating a Spatial Port Device di-
rectly on an End-Node is difficult. Indeed, there is often a
way to catch incoming IP packets but rarely to catch outcom-
ing ones. Moreover, network device submodels are often de-
pendent on a link submodel and cannot be separated from it.
For this purpose, we need to add a link attached to E1 for
catching the IP packets sent by E1. In order to be sure not
to change the simulation results, this link has to be a Perfect
Link, as we define it in Def.8. Because we need to have a
node on each side of the link, we have also to attach a Fake
Node on the Perfect Link.

DEFINITION 8. A Perfect Link is a link attached to an
End-Node on one side and to a Spatial Port Device on the
other side, for catching the IP packets produced by the End-
Node. It is useful when the IP simulator does not offer possi-
bility to catch them directly on the node. This link must have
no influence on the simulation results. This is why it should
be represented using a link submodel configured to have the
maximum throughput allowed by the simulator and a null de-
lay. Using a P2P link for that purpose avoids useless link
layer messages, like ARP or NDP ones.

The final multi-model is presented in Figure 4. Thanks to
the Perfect Link and the Fake Nodes, the simulation times
associated to the IP packets are the same when E1 sends them,
and when the Fake Node in Y resends them.

Figure 4. Splitting on a End-Node (Perfect Link represented with
two parallel bars).

4. STRUCTURAL COUPLINGS
As explained in Def. 2, in the case of Structural Couplings,
the data sent from the coupled model to the IP model corre-
sponds to application layer data. Consequently, we have to
define a submodel corresponding to an application, and be-
ing able to act as a proxy between the network device and
the coupled model. This is a new type of port that we call
Structural Port Device and we define in Def. 9. An example
of Structural Coupling is given in Figure 5.

DEFINITION 9. A Structural Port Device corresponds to
a modeled application installed on an End-Node, used for re-
ceiving incoming application layer data from the network and
transmitting them as input of a connected model. Structural
Port Devices are also in charge to receive the output data of
the connected model, then to send them to another network
device. In the network, a Structural Port Device is connected
to another network device, by an UDP or TCP socket.

Figure 5. Structural Coupling.

The following section explains how we connect the models
together, and we execute the multi-model.

5. CREATING AND EXECUTING A MULTI-MODEL

5.1. Co-Simulation With a Multi-Model
Thanks to the concepts defined above, we are now able to
create connectors for IP models. We described different types
of connectors (Port Devices), for different types of interaction
(Spatial or Structural Couplings). These connectors enable
us to provide input data to the models, and asking them for
output data, during the simulation. The next step is to connect
IP models and other ones together, for creating a multi-model.
This multi-model will be executed in a co-simulation.

The following sections deal with the interconnection of the
models, taking into account the heterogeneity issues, and the
time synchronization.

5.2. DEVS Co-Simulation Platform
In order to connect the models together, and ensure the com-
munications between the pairs of Spatial Port Devices and
Structural Port Devices, we chose to use the DEVS Simula-
tion Protocol [21].

Using a DEVS platform enables us to integrate different mod-
els with different formalisms, because DEVS is supposed to
be able to integrate any other formalisms [19]. For executing
our examples, we chose to use the DEVS-based MECSYCO
co-simulation platform [2]. MECSYCO uses the Agents &
Artifacts [16] paradigm for executing a multi-model, and the
DEVS wrapper principle [15] to integrate models. Thanks
to the Chandy-Misra-Bryant algorithm [3] (conservative) and
the multi-agent paradigm, the execution is fully decentral-
ized.



In order to describe a multi-model, MECSYCO uses the
following concepts. M-agents (Figure 6a) are autonomous
agents controlling the MECSYCO co-simulation, by han-
dling the time advancement of a single individual simulator
associated to a model. They also have the responsibility to
retrieve the external events from their associated model and
inject external events intended to it. An m-agent communi-
cates with a model through a model-artifact (Figure 6b). This
one corresponds to a DEVS wrapper attached to a model (Fig-
ure 6c) and their associated simulator, and allows the attached
m-agent to control the simulation. Finally, the coupling-
artifact (Figure 6d) ensures the exchange of events between
the m-agents, putting them in a buffer, as a mailbox. Trans-
formation operations may be used at the coupling-artifact
level, for solving some multi-formalism or heterogeneity is-
sues (e.g. changing time scales, adapting data units, etc.).

Figure 6. MECSYCO symbols.

Thanks to the DEVS concepts implemented in MECSYCO,
we are able to create DEVS wrappers for our models and in-
tegrate them in the same co-simulation. MECSYCO helps
use to solve heterogeneity problems, as demonstrated in [20].
Thanks to the possibility to add operations between the mod-
els, we can solve the time and data representation issues (e.g.
we can convert the representation of the IP packets exchanged
in a Spatial Coupling).

However, MECSYCO is a non-specialist platform and does
not provide solutions for integrating IP models and simula-
tors. For achieving that, we need to create DEVS wrappers.
The next section deals with the prerequisites for a DEVS
wrapper, and our concepts.

5.3. Interactions With the DEVS Wrapper
Our Port Devices can be seen as DEVS ports, with input and
output events. Creating a DEVS wrapper requires that we are
able to support four main functions:

• Processing an external event: An IP packet received as
an external event has to be injected in the network by a
Spatial Port Device. In the same way, an application layer
data received as an external event has to be send on the
network by a Structural Port Device.

• Processing an internal event: The next event recorded in
the events stack has to be processed by the IP simulator.

• Getting and output event: The IP packet or the data re-
ceived from the IP model, since the last internal event pro-
cessing, has to be transmitted from the Port Device to the
Wrapper.

• Getting next internal event time: The time associated to
the next event recorded in the events stack, has to be trans-
mitted from the IP simulator to the Wrapper.

Because some of these functions require to read and control
the events stack, this implies to modify the events scheduler
of the simulator.

The main goal is to ”break the events-loop”, in order to be
able to provide a function enabling to execute the next in-
ternal event only when the DEVS wrapper asks it, for syn-
chronization purposes. Based on our own experience, this
step can be difficult, because all simulators are not written
in a same manner. Simulators like NS-3 are convenient, be-
cause they use a single function with a loop inside (e.g. in
the case of NS-3, it is void Run() defined in the head-
ers of the SimulImpl class). Overriding it enables to add
a mutex, which can be locked or unlocked from a function
from another thread (corresponding to the DEVS wrapper).
Other simulators like OMNeT++ do not provide a loop di-
rectly overridable, but core functions like the one returning
the next internal event (e.g. in the case of OMNeT++, it is
cMessage* getNextEvent() defined in the headers of
the cScheduler class). Thanks to a mutex again and some
efforts for avoiding deadlocks, the scheduler can also be in-
strumentalized.

The DEVS wrapper also requires functions for passing exter-
nal events to the Port Devices, and retrieving the produced
ones. For this purpose, when a Port Device is instantiated at
the start of simulation, it has to be registered by the DEVS
wrapper using an index. During the simulation, the DEVS
wrapper uses its registry to exchange input and output exter-
nal events with all available Port Devices (used for Structural
Couplings as for Spatial ones).

The following section proposes a proof of concept, for vali-
dating the concepts presented above.

6. PROOF OF CONCEPT
This proof of concept (PoC) focuses on Spatial Couplings.
Its goal is to demonstrate that we managed to exchange IP
packets between models executed by two different IP simu-
lators, without affecting the simulation results. The proposed
scenario for our PoC is a modeled ping between two nodes
connected together by a simple P2P link, then a LTE infras-
tructure (see Figure 7).

Figure 7. Network topologies corresponding to our PoC, modeling
a ping between two nodes, via a P2P link and a LTE infrastructure.

A ping consists in exchanging packets, with a first node
(client) sending a request (echo message) to a second one
(server). When the server receives an echo message, it sends
a response (echo reply) to the client. Each node is enhanced
with a modeled application to define its own role, with a ping
client application (sending an echo message every second) for
the client and a ping server (responding an echo reply for each
received echo message) application for the server.



We want to split the first topology described in Figure 7 on the
server, corresponding to an End-Node. We want to split the
second topology on the gateway, corresponding to a Transit-
Node. Splittings are done exactly as described in Section 3,
using a Perfect Link and Fake Nodes for the first topology.

We did the following ping simulations: 1) Model entirely
written with NS-3, then with OMNeT++, 2) NS-3 model
with the client and the P2P link, coupled to another NS-3
model with the Perfect Link (or the LTE infrastructure) and
the server, 3) The same as the previous one, but with an OM-
NeT++ model on the server side and 4) Again the same con-
figuration, but with NS-3 at the server side and OMNeT++ at
the client side.

For validating our results, we did three groups of tests, corre-
sponding to: 1) All the versions using only a P2P link, 2) All
versions using an LTE network on the NS-3 side, and 3) All
versions using and LTE network on the OMNeT++ side. The
simulation time corresponding to the echo reply messages
must be exactly the same for all versions inside a same group,
experimentally showing that the coupling with MECSYCO
(with Port Devices, Fake Nodes and Perfect Links) has no
effect on the simulation results.

In order to compare the simulation results, we log the simu-
lation time corresponding to the echo replies messages. We
executed each version of our ping simulation an hundred of
times, finding exactly the same simulation results. Then, we
compared all versions inside a same group, and no difference
was found, including with the versions without couplings
(models entirely written in NS-3, then OMNeT++). Con-
sequently, we demonstrate that we managed to exchange IP
packets between models executed by two different IP simula-
tors, without affecting the simulation results.

The next section proposes a use case corresponding to a com-
plete simulation of a CPS, including a complex IP model with
Structural and Spatial Couplings.

7. USE CASE

7.1. Scenario
Our scenario corresponds to the use case explained in [6].
Heatings and temperature sensors of two rooms are mod-
eled with an equation-based FMU [1] model (industrial stan-
dard way to model physical systems). Indoor temperatures
are modeled taking account both the temperature transfered
through the wall separating the two rooms, and the influenc-
ing outside temperature. The heat transfers are determined
thanks to exchanges with an equation-based FMU modeling
the wall, and another one modeling the outside temperature.
Indoor temperatures can also be influenced by modeled heat-
ings for each room, controlled with a variable representing a
target temperature to reach.

As described in Figure 8, a remote controller is added to this
scenario. With this one, the user is supposed to be able to
schedule target temperature changes (heating controls), de-
pending on the time of the day. He is also supposed to be
able to remotely access to a temperatures graph for each room
(monitoring). For modeling this usage, a model of controller

(Java application) is added, along with a model of IP network.
The modeled IP network is described in Figure 9: monitor-
ing data are sent to the controller through the regular internet
access of the house, and heating controls are sent by the con-
troller through a dedicated LTE connection.

Figure 8. Intuitive graphic of the multi-model to compose.

Figure 9. IP network topology to model.

In this experiment, we use Structural and Spatial Couplings
with MECSYCO and the well-known IP simulators NS-3 and
OMNeT++. We integrated these IP simulators to MECSYCO
and we created libraries, including implementations of all of
the concepts we described in this paper. Any submodel avail-
able for NS-3 or OMNeT++ can be used in a co-simulation,
thanks to these MECSYCO libraries. Thanks to this exam-
ple, we demonstrate that we are able to 1) interconnect mod-
els available in not interoperable IP models libraries, 2) test
and compare similar models provided by different IP simula-
tors, 3) easily test different types of networks with different
topologies and 4) use an IP model for transporting data pro-
duced and used by models from another fields of expertise.

7.2. Modeling With a Single IP Network Model
As a first step, we model the whole IP network with NS-
3 (running on GNU/Linux, with C++ bindings). The NS-
3 model is connected to the other models with Structural
Couplings, as described in Figure 10. The remote controller
model and the FMUs are executed on another computer (run-
ning on Windows with Java bindings).

Figure 10. MECSYCO meta-model with only one IP model.



The IP Network modeled is described in Figure 11. After
some tests, we notice that the execution of the whole co-
simulation is very slow and that replacing the LTE model
by a simple wired model solves the problem. For that rea-
son, the performance of the NS-3 LTE model raises questions.
For comparison purposes, we would like to test another LTE
model, from a different IP models library.

Figure 11. Modeled IP Network, with Structural Couplings on
(E)nd-Nodes.

7.3. Adding an IP Model From a Different Library
In order to check if we could have better performance with
another LTE model, we decide to try the model proposed in
the OMNeT++ library. We add ports and spatial couplings, as
described in Figure 12 and we integrate an OMNeT++ (run-
ning on GNU/Linux, with C++ bindings) model in our multi-
model, as shown in Figure 13.

Figure 12. Modeled IP Network, with Structural and Spatial Cou-
plings on (E)nd-Nodes and (T)ransit-Nodes.

Figure 13. MECSYCO multi-model with two IP models.

In order to know if we improve the performance with OM-
NeT++ handling the LTE part, we compare the execution
times of the simulations, using a scalable version of our mod-
els with up to 20 modeled houses connected to the Internet.
Results are available in Figure 14. These results include a ver-
sion with the LTE part modeled by a second instance of NS-3,
for showing the current cost of the Spatial Couplings. With

OMNeT++ handling the LTE part (with a model disabling pe-
riodic CQI feedback packets), we get better execution times.

Figure 14. Performance comparison (using desktop computers).

As a last part of this experiment, we would like to test differ-
ent technologies for the local area network (LAN), between
the sensors and the internal controller.

7.4. Test of Different Models From the Same Library
In a first time, we split the IP model in order to isolate the
LAN part in a distinct NS-3 model (Figure15). Thanks to
MECSYCO, we now can develop several versions of this part
with different IP technologies (e.g. Wifi, PLC, etc.), and
interchange them quickly without any changes on the other
parts of the multi-model. The resulted new multi-model is
described in Figure 16.

Figure 15. Modeled IP Network, with three IP models.

Figure 16. MECSYCO multi-model with three IP models (without
model artifacts and models for readability).

The final simulation results of your use case are shown in
Figure 17. These results are consistent with the ones provided
by [6], considering that the remote controller was configured
to send the target temperatures 293.15K (6 AM), 288.15K (8
AM), 293.15K (4 PM), 288.15K (10 PM) to the room 1 and
288.15K (10 AM), 293.15K (11 PM) to the room 2.



Figure 17. Simulation results (1 house and 2 simulated days).

8. CONCLUSION
The goal of this paper was to present our solution for mod-
eling CPS, including physical models and IP models. We
identified two types of coupling with IP models: Spatial and
Structural Couplings. We then proposed some concepts for
splitting IP models and connect them to models from other
fields of expertise. Thanks to the DEVS formalism and the
co-simulation platform MECSYCO, we demonstrated that we
are able to connect the models together and to execute the
multi-model.

We proposed some proofs of concept, experimentally vali-
dating that our couplings, using our concepts, have no influ-
ence on the simulation results. Then, we proposed a complete
CPS use case, with equation-based models connected and an
IP network topology modeled thanks to several IP models li-
braries, provided by different IP simulators. This experiment
was an opportunity to demonstrate that using several IP mod-
els libraries is feasible using our approach and can even im-
prove the performance of the simulation.

As future works, we plan to build more substantial simu-
lations and to work on the split-protocol stack method de-
scribed by [18].

ACKNOWLEDGMENTS
This work is partially funded by EDF R&D through the strate-
gic project MS4SG.

ADDITIONAL AUTHORS
1. Benjamin Camus, Université de Lorraine, CNRS, In-

ria, LORIA, UMR 7503, Vandœuvre-lès-Nancy, F-54506,
France, benjamin.camus@loria.fr

REFERENCES
1. Blochwitz, T., Otter, M., Akesson, J., et al. Functional

Mockup Interface 2.0: The Standard for Tool independent
Exchange of Simulation Models. In Proc. International
Modelica Conference (2012), 173–184.

2. Camus, B., Bourjot, C., and Chevrier, V. Combining
DEVS with Multi-agent Concepts to Design and Simulate
Multi-models of Complex Systems (WIP). In Proc.
TMS/DEVS, SCS (2015), 85–90.

3. Chandy, K., and Misra, J. Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs.
IEEE Trans. on SE, 5 (1979), 440–452.

4. Colby, S. A., and Beethan, D. L. Long range artillery
simulation using component based development
techniques and the high level architecture. In Proc. WSC,
vol. 1 (2000), 1001–1005.

5. George Riley. PDNS - Parallel/Distributed NS, 2014.

6. Gilpin, L., Ciarletta, L., Presse, Y., et al. Co-simulation
Solutions Using AA4MM-FMI Applied to Smart Space
Heating Models. In Proc. SimuTools’14, 153–159.

7. Gottlieb, E. J., McDonald, M. J., Oppel, F. J., et al. The
Umbra simulation framework as applied to building HLA
federates. In Proc. WSC, vol. 1 (2002), 981–989 vol.1.

8. He, Q., Ammar, M., Riley, G., et al. Mapping peer
behavior to packet-level details: a framework for
packet-level simulation of peer-to-peer systems. In Proc.
MASCOTS’03 (2003), 71–78.

9. Hibino, H., Yura, Y., Fukuda, Y., et al. Manufacturing
Modeling Architectures: Manufacturing Adapter of
Distributed Simulation Systems Using HLA. In Proc.
WSC (2002), 1099–1107.

10. Hopkinson, K., Wang, X., Giovanini, R., et al. EPOCHS:
a platform for agent-based electric power and
communication simulation built from commercial
off-the-shelf components. IEEE Trans. on Power Systems
21, 2 (2006), 548–558.

11. Lin, H. Communication infrastructure for the smart grid:
A co-simulation based study on techniques to improve the
power transmission system functions with efficient data
networks. PhD thesis, Virginia Tech, 2012.

12. Lin, H., Sambamoorthy, S., Shukla, S., et al. Power
system and communication network co-simulation for
smart grid applications. In ISGT (2011), 1–6.

13. Nutaro, J. adevs: A Discrete EVent System simulator.

14. Pelkey, J., and Riley, G. Distributed Simulation with MPI
in Ns-3. In Proc. SimuTools, ICST (2011), 410–414.

15. Quesnel, G., Duboz, R., and Ramat, É. The Virtual
Laboratory Environment – An operational framework for
multi-modelling, simulation and analysis of complex
dynamical systems. Simulation Modelling Practice and
Theory 17, 4 (2009), 641–653.

16. Ricci, A., Viroli, M., and Omicini, A. Give Agents Their
Artifacts: The A&A Approach for Engineering Working
Environments in MAS. In Proc. AAMAS (2007), 150:1–3.

17. Riley, G. F. The Georgia Tech Network Simulator. In
Proc. MoMeTools (2003), 5–12.

18. Riley, G. F., Ammar, M. H., Fujimoto, R. M., et al. A
Federated Approach to Distributed Network Simulation.
ACM Trans. Model. Comput. Simul. 2004 14, 2, 116–148.

19. Vangheluwe, H. L. M. DEVS as a common denominator
for multi-formalism hybrid systems modelling. In Proc.
CACSD (2000), 129–134.

20. Vaubourg, J., Presse, Y., Camus, B., et al. In Proc.
PAAMS, Y. Demazeau et al., Eds., no. 9086. Springer
International Publishing, 2015, 240–251.

21. Zeigler, B. P., Kim, T. G., and Praehofer, H. Theory of
Modeling and Simulation. Academic Press, Inc., 2000.


	Introduction
	Goals and Challenges Related to Co-simulations with IP Simulators
	Couplings Between IP Models
	Couplings Between IP Models and Non-IP Models
	Time Synchronization

	Spatial Couplings
	Splitting a Network Topology
	Splitting on a Transit-Node
	Splitting on a End-Node

	Structural Couplings
	Creating and Executing a Multi-Model
	Co-Simulation With a Multi-Model
	DEVS Co-Simulation Platform
	Interactions With the DEVS Wrapper

	Proof of Concept
	Use Case
	Scenario
	Modeling With a Single IP Network Model
	Adding an IP Model From a Different Library
	Test of Different Models From the Same Library

	Conclusion

